MLP(Multi-Layer Perceptron)를 이용한 학습은 간단한 구조에도 비선형 분류가 가능하다는 장점을 가지고 있다. 하지만 오류역전파 알고리즘을 사용함으로써 시간의 소모가 크고 원치 않는 결과값으로의 수렴가능성을 배제할 수 없다는 단점을 가지고 있다. 이는 초기설정의 의존도가 높기 때문에 발생하는 문제들로 좋은 결과값에 근접한 곳으로 초기화가 이루어지면 좋은 학습 성능을 보이지만 반대로 좋은 결과값으로부터 멀리 떨어진 곳으로 신경망의 초기화가 이루어지면 학습 성능이 현저히 낮아지는 현상을 보인다. 본 논문에서는 MLP 전체의 층을 대상으로 하는 본 학습이 이루어지기 전에 RBM(Restricted Boltzmann Machine)을 이용, 층간 선행학습을 행하고 그 결과로 얻어지는 가중치와 바이어스를 본 MLP 학습의 초기화 데이터로 사용하는 개선 MLP 학습 알고리즘을 제안한다. 이 방법을 사용함으로써 MLP 학습 속도향상은 물론 원치 않는 지역해로의 수렴까지 방지할 수 있어 전체적인 학습 성능향상이 가능하게 된다.
정보통신의 기술이 발달하면서 정보의 양이 많아지고 사용자의 질의에 대한 검색 결과 리스트도 많이 추출되므로 빠르고 고품질의 문서 클러스터링 알고리즘이 중요한 역할을 하고 있다. 많은 논문들이 계층적 클러스터링 방법을 이용하여 좋은 성능을 보이지만 시간이 많이 소요된다. 반면 K-means 알고리즘은 시간 복잡도를 줄일 수 있는 방법이다. 본 논문에서는 계층적 클러스터링 시스템인 콘도르(Condor) 시스템에서 간단하고 고품질이며 효율적으로 정보 검색 할 수 있도록 구현하였다. 이 시스템은 K-Means Algorithm을 이용하였으며 클러스터 계층 깊이와 초기값을 조절하여 $88\%$의 정확율을 보였다.
Journal of the Korean Data and Information Science Society
/
제25권2호
/
pp.411-422
/
2014
본 연구는 2011학년도 입학하여 여섯 학기 연속 이수한 학생을 대상으로 평균 GPA의 초기값(intercept), 기울기 (slope), 2차항 (quadratic term)을 구하여 이수학기가 늘어나면서 평균 GPA가 어떻게 변화하는지 분석하였다. 구체적으로 이수학기가 늘어나면서 성별과 모집단위에 따라 평균 GPA의 초기값, 기울기, 2차항에 차이가 있는지 분석하였다. 그 결과 초기값에 영향을 주는 변수는 모집단위, 기울기에 영향을 주는 변수는 성별이며 2차항에 영향을 미치는 변수는 하나도 없었다.
본 논문에서는 보로노이 다이아그램을 이용하여 오류 역전파 신경망의 초기값을 결정할수 있는 VoD_EBP를 제안하였다. VoD_EBP는 초기 연결 가중치와 임계값을 공학적 계산방법으로 결정함으로써 기존의 EBP에서 자주 발생하는 학습 마비 현상을 피할수 있고 초기부터 빠른 속도로 학습이 진행되므로 학습횟수를 단축시킬수 있다, 또한 VoD_EBP는 은닉층의 노드 수를 보로노이 다각형으로 구분된 클러스터들의 개수로 정할 수있어 신경망 설계에 신뢰성을 향상시켰다. 제시된 VoD_EBP의 효율성을 입증하기 위해 간단한 실험으로 2차원 입력벡터를 갖는 XOR 문제와 3차원 패리티 코드 검출 문제에 대하여 적용하여 보았다. 그 결과 임의의 초기값으로 설정하였던 EBP보다 훨씬 빠르게 학습이 종료되었고, 지역 최소치에 빠져 학습이 진행되지 못하는 현상이 발생하지 않았다.
본 논문에서는 기존의 영상분할에서 발생하는 초기값 배정문제와 영상분할 가능여부를 확인할 수 있는 방법에 대한 이론적 근거를 분석하고 제시한다. 본 논문의 앞 부분에서는 위상수학의 이론에 근거한 수학적 논증을 바탕으로 적절한 초기값 배정의 대한 위상적 근거와 방법론을 제시한다. 이어서 위상수학의 분리공리 이론에 근거하여 영상이 영역 분할되기 위한 최소의 위상조건을 확인하고 해당 조건을 이용하여 영상분할을 위해 사용된 모델의 유효성을 검증하는 방법론을 제시한다. 즉, 본 논문은 기존의 통계적 분석과 달리, 위상적 분석을 통해 영상 영역 분할의 수학적 근거를 제시한 것에 그 특징이 있다. 마지막으로 기존의 가우시안 랜덤 필드 모델 기반 영상 분할에 본 논문에서 제시한 이론과 방법론을 적용하여 가우시안 랜덤 필드 모델의 유효성을 확인한다.
파랑의 분산관계식에서 상대수심이 반복적으로 표현되는 순환 관계를 이용하여 파랑분산식의 양해를 개발하였다. 순환 관계를 이용한 해의 초기값으로 Eckart(1951), Hunt(1979)의 해와 심해와 천해에서의 해를 사용했다. 순환해 가운데 심해에서의 해를 초기값으로 사용한 해를 제외하고는 모두 참값으로 수렴하였다. 특히, Hunt의 해를 초기값으로 사용한 해는 다른 해보다 더 빠르게 수렴했다. 순환해는 휴대용 계산기를 사용하여 손 쉽고 빠르게 구할 수 있는 장점이 있다. 선형파의 변형을 예측하기 위하여 해석 해를 사용할 경우 파랑분산식의 양해를 사용해야 하는 데 본 연구에서 개발한 순환해를 사용하면 기존의 양해를 사용한 것보다 더 정확한 해석 해를 도출할 것이다.
동영상 정보는 영상정보뿐만 아니라 음성정보, 문자정보 및 각종 의미있는 정보들을 포함하고 있어서 기존의 검색방법으로는 사용자가 원하는 이미지를 찾는데 어려움이 따른다. 따라서, 본 연구에서는 동영상 정보의 효율적인 활용을 위한 색인방법으로 칼라 임계값을 이용한 컷 검출 방법을 제안하였다. 이것은 frame 간의 유사도를 측정해서 이 값이 주어진 임계값보다 작을 경우, 장면의 전환이 일어나는 곳을 컷 지점으로 검출하는 것인데, 동영상의 장면에 따른 유사도가 다를 수 있기 때문에, 컷을 구성하는 프레임들간의 칼라 임계값에 변동을 주어 최적의 컷 검출율을 구하고자 했다. 초기의 칼라 임계값은 '80'을 사용했고, 이후 frame 의 유사도가 임계값보다 클 경우, 즉 장면전환이 일어나지 않았을 경우일정한 상수 값을 초기 임계값에서 감산토록 하였다. 이러한, 과정을 거쳐 추출된 frame을 가지고 원하는 이미지를 검색하게 되면 사용자의 노력 및 검색 시간이 단축되고, 동영상 정보의 관리가 용이해진다.
본 연구에서는 Feedforward Neural Network에 적용될 수 있는 개선된 학습 알고리즘을 개발하고자 한다. 제시된 알고리즘을 이용하여 학습을 할 때 학습 초기는 가장 단순한 경우로써 한 개의 학습 패턴과 은닉 층으로부터 시작한다. 신경망 학습 중에 지역 최소값에 수렴되면 weights scaling 기법을 이용하여 지역 최소값을 벗어나도록 한다. 지역 최소값의 탈출이 용이하지 않으면 은닉노드를 점차적으로 추가한다. 이러한 단계에서 새롭게 추가된 노드에 대한 초기값 선택은 선형계획법을 이용한 최적 처리절차론 이용한다. 최적 처리절차의 결과로써 은닉 층의 노드가 추가된 후의 네트워크는 학습회수를 증가시키지 않아도 학습 허용오차를 만족시킬 수 있다 본 연구에서 적용한 개선된 알고리즘을 이용하면 신경망 학습시의 수렴 정도를 높여주고 최소한의 단순 구조를 갖는 신경망으로 추정할 수 있게 하며, 이 결과를 모의실험을 통하여 살펴보고 기존의 연구 결과와 비교한다.
대규모 데이터에 대한 특성에 따라 몇 개의 클러스터로 군집화하는 클러스터링 기법은 계층적 클러스터링이나 분할 클러스터링 등 다양한 기법이 있는데 그 중에서 K-Means 알고리즘은 구현이 쉬우나 할당-재계산에 소요되는 시간이 증가하게 된다. 본 논문에서는 초기 클러스터 중심들 간의 거리가 최대가 되도록 하여 초기 클러스터 중심들이 고르게 분포되도록 함으로써 할당-재계산 횟수를 줄이고 전체 클러스터링 시간을 감소시키고자 한다.
실험적 베리오그램의 모델링에 SA(Simulated Annealing)기법을 이용하였다. 최소 자승법의 해를 구하기 위하여 기존의 상용 프로그램에서 많이 이용되고 있는 반복법에 근거한 방법에 비해서 SA 기법은 초기 가정값에 크게 영향을 받지 않고 일정한 모델 인자의 값을 제시하였다. 임의의 초기 가정값을 입력하여도 충분한 반복 계산을 통하여 목적함수의 값이 광역적 최소값으로 수렴하는 것을 확인할 수 있었다. 베리오그램 모델이 일반적으로 비선형 모델이기 때문에 목적함수의 지역적 최소값으로의 수렴이 문제가 되고 이로 인하여 구해지는 인자의 값이 정확하지 않을 수 있지만 SA 기법을 이용하여 최소 자승법의 해를 구하게 되면 정확한 인자의 값을 구할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.