• 제목/요약/키워드: 초공동

검색결과 215건 처리시간 0.03초

초공동 수중비행체의 공동영역 내부에서 분사된 배기가스가 수중비행체의 항력에 미치는 영향에 대한 수치해석적 연구 (Numerical Analysis for Drag Force of Underwater Vehicle with Exhaust Injected inside Supercavitation Cavity)

  • 유상원;이우근;김태순;곽영균;고성호
    • 대한기계학회논문집B
    • /
    • 제39권12호
    • /
    • pp.913-919
    • /
    • 2015
  • 초공동 수중비행체는 수중에서 시속 300 km 이상의 속력을 가진다. 초공동 수중비행체는 로켓추진을 동력으로 사용하기 때문에 초공동 수중비행체의 수치해석은 물과 수증기, 배기가스로 이루어진다상 유동을 다루게 된다. 배기가스가 수중비행체에 미치는 영향은 초공동 수중 비행체 성능연구에 중요한 부분이다. 본 연구에서는 초공동 수중비행체 주변의 유동장에 대한 수치해석을 통하여 배기가스가 비행체의 항력에 어떠한 영향을 미치는지 알아보았다. 배기가스가 없는 경우, 수중비행체를 둘러싼 초공동으로 물이 유입되는 재유입현상에 의해 수중비행체 항력의 변화가 발생한다. 추진체가 있는 경우 배출되는 가스는 재유입현상에 의한 영향을 감소시킨다. 또한 배기가스는 마하디스크를 생성하며 그 영향을 받아 항력 변화가 발생한다.

초공동 로켓 어뢰 Shkval 추진기술 (Propulsion Technologies of Supercavitating Rocket Torpedo, Shkval)

  • 김윤곤;나영인
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.383-387
    • /
    • 2011
  • 초공동을 발생시켜 수중에서 초고속으로 날아가는 초공동 로켓 어뢰인 SHKVAL 체계가 어떻게 작동하는지와 이에 장착된 추진기관들과 초공동 발생 도움에 필요한 가스 발생기에 대해 조사/분석하였다. 본 체계의 추진기관은 발사 및 1차 가속용 고체로켓추진기관, 2차 가속용 고체 로켓 추진기관, 그리고 고농도 Mg이 함유된 해수반응연료 로켓 추진기관으로 구성되어 있으며, 가스 발생기는 초공동 발생 가속용 고체 가스 발생기와 항주용 해수반응연료 가스 발생기로 되어 있음을 밝히고, 이들에 대한 구조와 성능에 대해 현재까지 조사/분석된 바를 기술하였다.

  • PDF

받음각을 갖는 초공동 수중 운동체에서 발생하는 초월공동과 유체력 특성에 대한 수치적 연구 (A Numerical Study on the Characteristics of the Supercavitation and Hydrodynamic Forces Generated in a Supercavitating Underwater Vehicle with Angle of Attack)

  • 전윤호;박정훈;전관수
    • 대한조선학회논문집
    • /
    • 제58권4호
    • /
    • pp.214-224
    • /
    • 2021
  • Recently, as the technology of the supercavitating underwater vehicle is improved, the necessity of research for maneuvering characteristics of the supercavitating underwater vehicle has emerged. In this study, as a preliminary step to analyzing the maneuverability of a supercavitating underwater vehicle, the characteristics of cavity shapes and hydrodynamic forces generated in a supercavitating underwater vehicle with an angle of attack were evaluated numerically. First, the geometry was designed by modifying the shape of the existing supercavitating underwater vehicle. The continuity and the Navier-stokes equations are numerically solved, and turbulent eddy viscosity is solved by the k-ω SST model. The results present the characteristics of cavity shape and the hydrodynamic forces of the designed geometry with an angle of attack.

초공동(超空洞) 하의 수중 주행체 캐비테이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • 최주호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.82-85
    • /
    • 2008
  • 수중에서 발사체가 고속으로 주행할 때 발사체의 머리 즉, 캐비테이터 만이 물과 접촉한 상태에서 커다란 공동이 발생하여 몸체 전체를 뒤덮는 초공동현상이 발생한다. 초공동 상태에서는 발사체는 저항이 감소되어 매우 빠른 속도를 낼 수 있게 된다. 더욱이 캐비테이터가 적합한 형상을 가지게 되면 매우 낮은 압력저항을 유지하고 전체적인 저항도 획기적으로 줄일 수 있기 때문에 본 연구에서는 주어진 작용환경 하에서 저항을 최소화 하기위한 최적의 캐비테이터 형상최적설계 문제를 고려하였다. 그리고 효율적인 캐비테이터 형상최적화를 위해 공동과 캐비테이터 형상을 하나의 죄적화로 변환한 동시최적화기법을 수행하였다.

  • PDF

초월공동 수중운동체를 위한 캐비테이터 전산 유동 해석 (SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR)

  • 박수일;박원규;정철민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.188-192
    • /
    • 2009
  • A massive cavity is generated behind the underwater vehicles, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. when a underwater vehicle moves at very high speed in the underwater. At this point it makes supercavitating flow and the nose, ie., the cavitator is very important fator at the vehicle since it should be surrounded by the cavity. The present work has focused on the simulation of cavitation flow using the new cavitator. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained.

  • PDF

초공동 수중운동체 주위 공동 특성과 추력 전산 해석 (Numerical Analysis of Cavity Characteristics and Thrust for Supercavitating Underwater Vehicle)

  • 김동현;박원규
    • 한국해양공학회지
    • /
    • 제31권1호
    • /
    • pp.8-13
    • /
    • 2017
  • Cavitation is used in various fields. This study examined the drag reduction of an underwater vehicle using cavitation. In this study, the natural partial cavitation analysis results were verified using CFD code with the Navier-Stokes equation based on a mixture model. The momentum and continuity equations in the mixture phase were separately solved in the liquid and vapor phases. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The results of a computational analysis showed good agreement with the experiment. A computational analysis was also performed on the supercavity. The study investigated the cavity characteristics and drag of an underwater vehicle and studied the speed required to achieve a supercavity. Finally, a 1DOF analysis was carried out to investigate the thrust system for a supercavity. As a result, one of the methods for determining a suitable thrust system for a supercavitating underwater vehicle was presented.

고속 어뢰의 인공 초공동 특성에 대한 실험 연구 (Experimental Study on Artificial Supercavitation of the High Speed Torpedo)

  • 안병권;정소원;김지혜;정영래;김선범
    • 한국군사과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.300-308
    • /
    • 2015
  • Recently supercavitating underwater torpedo moving at high speed (over 200 knots) has been interested for their practical advantage of the dramatic drag reduction. Cavitator located in front of the torpedo plays an important role to generate a natural supercavity and control the motion of the object. Supercavity can be created artificially by injection of compressed gas from the rear of the cavitator at a relatively low speed. In this paper, we investigated physical characteristics of artificial supercavities through cavitation tunnel experiments. One of the main focuses of the study was to measure pressure inside the cavity, and examined variation of the gravity effects appearing according to different amount of injected air. It was also found that a stable supercavity could be sustained at injection rates less than that required to form the stable supercavity because of hysteresis effect.

초공동 수중운동체 캐비테이터의 항력과 양력특성에 관한 수치해석적 연구 (Numerical Investigation of Drag and Lift Characteristics of Cavitator of Supercavitating Underwater Vehicle)

  • 강병윤;장세연;강신형
    • 대한기계학회논문집B
    • /
    • 제38권10호
    • /
    • pp.797-805
    • /
    • 2014
  • 본 연구의 목적은 해수 흡입구를 고려한 초공동 수중운동체 캐비테이터의 항력과 양력특성 및 해수 흡입유로의 입구에서 압력손실에 대해 예측하는 것이다. 흡입구 직경과 유로에서의 속도, 흡입구의 곡률반경 및 캐비테이터의 받음각이 미치는 영향에 대해 유동해석을 수행하였다. 연구 결과 직경비가 커지면, 항력계수와 압력손실계수가 감소하며, 속도비가 증가할 때 항력계수와 양력계수는 감소하고 압력손실계수는 증가한다. 해수 흡입구에 곡률을 주면 항력계수와 양력계수에는 영향을 미치지 않지만, 압력손실계수가 크게 감소한다. 캐비테이터의 받음각은 항력계수와 압력손실계수에 미소한 영향만을 주나, 양력계수를 크게 변화시킨다. 초공동 수중운동체 설계 시 본 연구 결과를 반영할 수 있다.

초공동 로켓 시스템 (Supercavitating Rocket System)

  • 김경무;이형진;길태옥
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.867-880
    • /
    • 2013
  • The development for a high speed underwater vehicle has been demanded for a long time, and it is possible to realize using supercavitation. This paper introduces the main technologies that are necessary to develop a supercavitating rocket system, such as "Supercavitation" and "Hydroreactive technology", and describes the operating concepts and principles for its components specifically. Russia has obtained the key technologies of supercavitation and hydroreactive fuel technology for the first time. Russia has developed a supercavitating rocket torpedo, Shkval, and it was in service since 90's. Iran collaborated with Russia to develop a supercavitating rocket torpedo 'Hoot' and finished a test recently. This paper describes the analysis results related with the cavitator based on the technical reports for Shkval of Russia and Hoot of Iran.

초공동 수중운동체의 천이구간 특성을 고려한 동역학 모델링 및 심도제어 연구 (Study on Dynamics Modeling and Depth Control for a Supercavitating Underwater Vehicle in Transition Phase)

  • 김선홍;김낙완
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.88-98
    • /
    • 2014
  • A supercavitation is modern technology that can be used to reduce the frictional resistance of the underwater vehicle. In the process of reaching the supercavity condition which cavity envelops whole vehicle body, a vehicle passes through transition phase from fully-wetted to supercaviting operation. During this phase of flight, unsteady hydrodynamic forces and moments are created by partial cavity. In this paper, analytical and numerical investigations into the dynamics of supercavitating vehicle in transition phase are presented. The ventilated cavity model is used to lead rapid supercavity condition, when the cavitation number is relatively high. Immersion depth of fins and body, which is decided by the cavity profile, is calculated to determine hydrodynamical effects on the body. Additionally, the frictional drag reduction associated by the downstream flow is considered. Numerical simulation for depth tracking control is performed to verify modeling quality using PID controller. Depth command is transformed to attitude control using double loop control structure.