• Title/Summary/Keyword: 초고해상화

Search Result 50, Processing Time 0.024 seconds

Contested Technologies, Resetting the Boundary, and the "signifiant-politics": Semiotical Governance of New Technology in the Case of fMRA (경합하는 기술, 경계의 재설정, 그리고 기표-정치(signifiant-politics): 기능성자기공명혈관조영술(fMRA)의 사례로 살펴본 신기술의 명명 작업)

  • Lee, June-Seok
    • Journal of Science and Technology Studies
    • /
    • v.14 no.2
    • /
    • pp.199-222
    • /
    • 2014
  • Functional Magnetic Resonance Angiography (fMRA) was a technoscientific innovation that allows scientists to directly view the changes made in the blood vessels of a brain. fMRA was first developed at Neuroscience Research Institute (NRI) in Korea. fMRA mainly utilizes 7 Tesla MRI technology, and NRI is equipped with the instrument. First article on fMRA was published in 2008, and two more papers in 2010 and 2012 consecutively had been published on the newly developed technique. However, fMRA is a competitive technology with existing fMRI. Both techniques capture microvascular changes in a brain, and by doing it, both techniques visualize the cognitive and affective changes. fMRI technology was introduced by Seiji Ogawa in the early 1990's and has been widely used since then. In contrast, fMRA was a newer technology and rather unknown. Developers of fMRA in NRI used series of signifiant-politics in order to make it better known to scientific community as well as public. By resetting the boundaries of existing concept of fMRI, they tried to lower the threshold of a new concept/technique. This case study shows how technoscientists use semiotic strategies governing new technology.

  • PDF

Bit Interleaver Design of Ultra High-Order Modulations in DVB-T2 for UHDTV Broadcasting (DVB-T2 기반의 UHDTV 방송을 위한 초고차 성상 변조방식의 비트 인터리버 설계)

  • Kang, In-Woong;Kim, Youngmin;Seo, Jae Hyun;Kim, Heung Mook;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.195-205
    • /
    • 2014
  • The ultra-high definition television (UHDTV) has been considered as a next generation broadcsating service. However the conventional digital terrestrial transmission system cannot afford the required transmission data rate of UHDTV, and thus adopting ultra-high order constellation, such as 4096-QAM, into the conventional DTT systems has been studied. In particular, when the ultra-high order constellation is adopted into the digital video broadcasting-2nd generation terrestrial (DVB-T2) unequal-error protection (UEP) properties of a codeword of an error correction coding and ultra-high order constellations should be properly matched by bit mapper in order to enhance the decoding performance. Because long codeword results in a heavy computational complexity to design the bit mapper, the DVB-T2 divided it into cascaded blocks, the bit interleaver and the bit-to-cell DEMUX, and there have been many researches related to each block. However, there are few published study related to design methodology of bit interleaver. In this respect, this paper proposes a design methodology of the bit interleaver and presents bit interleavers of 1024-QAM and 4096-QAM according to the proposed design algorithm. The newly designed interleavers improved the decoding performance of the error correction coding by maximally 0.6 dB SNR over both of AWGN and random fading channel.

Scalable Video Coding Using Large Block and its Performance Analysis (Large Block을 적용한 SVC 부호화 및 성능분석)

  • Park, Un-Ki;Choi, Haechul;Kang, Jung Won;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.249-260
    • /
    • 2013
  • Recently, High-Efficiency Video Coding (HEVC) has been developed as a new video coding standard mainly focusing on the coding of ultra high definition (UHD) videos as the high resolution and high quality videos are getting more popular. Furthermore, the scalable extension of HEVC is being standardized for more efficient provision of HD and UHD services in the communications-broadcasting convergence environment. In this paper, we propose an improved scalable video coding method of H.264/AVC to achieve high coding efficiency particularly for UHD and HD videos. The basic idea is to allow large block size in H.264/AVC SVC, which results in more efficient inter-layer prediction and syntax elements coding. The experimental results show that it achieves an average 4.53% reduction in BD-rate relative to H.264/AVC SVC.

CPU Parallel Processing and GPU-accelerated Processing of UHD Video Sequence using HEVC (HEVC를 이용한 UHD 영상의 CPU 병렬처리 및 GPU가속처리)

  • Hong, Sung-Wook;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.816-822
    • /
    • 2013
  • The latest video coding standard HEVC was developed by the joint work of JCT-VC(Joint Collaborative Team on Video Coding) from ITU-T VCEG and ISO/IEC MPEG. The HEVC standard reduces the BD-Bitrate of about 50% compared with the H.264/AVC standard. However, using the various methods for obtaining the coding gains has increased complexity problems. The proposed method reduces the complexity of HEVC by using both CPU parallel processing and GPU-accelerated processing. The experiment result for UHD($3840{\times}2144$) video sequences achieves 15fps encoding/decoding performance by applying the proposed method. Sooner or later, we expect that the H/W speedup of data transfer rates between CPU and GPU will result in reducing the encoding/decoding times much more.

Development and Wind Speed Evaluation of Ultra High Resolution KMAPP Using Urban Building Information Data (도시건물정보를 반영한 초고해상도 규모상세화 수치자료 산출체계(KMAPP) 구축 및 풍속 평가)

  • Kim, Do-Hyoung;Lee, Seung-Wook;Jeong, Hyeong-Se;Park, Sung-Hwa;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.179-189
    • /
    • 2022
  • The purpose of this study is to build and evaluate a high-resolution (50 m) KMAPP (Korea Meteorological Administration Post Processing) reflecting building data. KMAPP uses LDAPS (Local Data Assimilation and Prediction System) data to detail ground wind speed through surface roughness and elevation corrections. During the detailing process, we improved the vegetation roughness data to reflect the impact of city buildings. AWS (Automatic Weather Station) data from a total of 48 locations in the metropolitan area including Seoul in 2019 were used as the observation data used for verification. Sensitivity analysis was conducted by dividing the experiment according to the method of improving the vegetation roughness length. KMAPP has been shown to improve the tendency of LDAPS to over simulate surface wind speeds. Compared to LDAPS, Root Mean Square Error (RMSE) is improved by approximately 23% and Mean Bias Error (MBE) by about 47%. However, there is an error in the roughness length around the Han River or the coastline. Accordingly, the surface roughness length was improved in KMAPP and the building information was reflected. In the sensitivity experiment of improved KMAPP, RMSE was further improved to 6% and MBE to 3%. This study shows that high-resolution KMAPP reflecting building information can improve wind speed accuracy in urban areas.

Recent Developments in Quantum Dot Patterning Technology for Quantum Dot Display (양자점 디스플레이 제작을 위한 양자점 패터닝 기술발전 동향)

  • Yeong Jun Jin;Kyung Jun Jung;Jaehan Jung
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.169-179
    • /
    • 2024
  • Colloidal quantum dot (QDs) have emerged as a crucial building block for LEDs due to their size-tunable emission wavelength, narrow spectral line width, and high quantum efficiency. Tremendous efforts have been dedicated to improving the performance of quantum dot light-emitting diodes (QLEDs) in the past decade, primarily focusing on optimization of device architectures and synthetic procedures for high quality QDs. However, despite these efforts, the commercialization of QLEDs has yet to be realized due to the absence of suitable large-scale patterning technologies for high-resolution devices., This review will focus on the development trends associated with transfer printing, photolithography, and inkjet printing, and aims to provide a brief overview of the fabricated QLED devices. The advancement of various quantum dot patterning methods will lead to the development of not only QLED devices but also solar cells, quantum communication, and quantum computers.

MPEG-H 3D Audio Decoder Structure and Complexity Analysis (MPEG-H 3D 오디오 표준 복호화기 구조 및 연산량 분석)

  • Moon, Hyeongi;Park, Young-cheol;Lee, Yong Ju;Whang, Young-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.432-443
    • /
    • 2017
  • The primary goal of the MPEG-H 3D Audio standard is to provide immersive audio environments for high-resolution broadcasting services such as UHDTV. This standard incorporates a wide range of technologies such as encoding/decoding technology for multi-channel/object/scene-based signal, rendering technology for providing 3D audio in various playback environments, and post-processing technology. The reference software decoder of this standard is a structure combining several modules and can operate in various modes. Each module is composed of independent executable files and executed sequentially, real time decoding is impossible. In this paper, we make DLL library of the core decoder, format converter, object renderer, and binaural renderer of the standard and integrate them to enable frame-based decoding. In addition, by measuring the computation complexity of each mode of the MPEG-H 3D-Audio decoder, this paper also provides a reference for selecting the appropriate decoding mode for various hardware platforms. As a result of the computational complexity measurement, the low complexity profiles included in Korean broadcasting standard has a computation complexity of 2.8 times to 12.4 times that of the QMF synthesis operation in case of rendering as a channel signals, and it has a computation complexity of 4.1 times to 15.3 times of the QMF synthesis operation in case of rendering as a binaural signals.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring (농업관측을 위한 다중분광 무인기 반사율 변동성 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1379-1391
    • /
    • 2020
  • UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.

Temperature and Solar Radiation Prediction Performance of High-resolution KMAPP Model in Agricultural Areas: Clear Sky Case Studies in Cheorwon and Jeonbuk Province (고해상도 규모상세화모델 KMAPP의 농업지역 기온 및 일사량 예측 성능: 맑은 날 철원 및 전북 사례 연구)

  • Shin, Seoleun;Lee, Seung-Jae;Noh, Ilseok;Kim, Soo-Hyun;So, Yun-Young;Lee, Seoyeon;Min, Byung Hoon;Kim, Kyu Rang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.312-326
    • /
    • 2020
  • Generation of weather forecasts at 100 m resolution through a statistical downscaling process was implemented by Korea Meteorological Administration Post- Processing (KMAPP) system. The KMAPP data started to be used in various industries such as hydrologic, agricultural, and renewable energy, sports, etc. Cheorwon area and Jeonbuk area have horizontal planes in a relatively wide range in Korea, where there are many complex mountainous areas. Cheorwon, which has a large number of in-situ and remotely sensed phenological data over large-scale rice paddy cultivation areas, is considered as an appropriate area for verifying KMAPP prediction performance in agricultural areas. In this study, the performance of predicting KMAPP temperature changes according to ecological changes in agricultural areas in Cheorwon was compared and verified using KMA and National Center for AgroMeteorology (NCAM) observations. Also, during the heat wave in Jeonbuk Province, solar radiation forecast was verified using Automated Synoptic Observing System (ASOS) data to review the usefulness of KMAPP forecast data as input data for application models such as livestock heat stress models. Although there is a limit to the need for more cases to be collected and selected, the improvement in post-harvest temperature forecasting performance in agricultural areas over ordinary residential areas has led to indirect guesses of the biophysical and phenological effects on forecasting accuracy. In the case of solar radiation prediction, it is expected that KMAPP data will be used in the application model as detailed regional forecast data, as it tends to be consistent with observed values, although errors are inevitable due to human activity in agricultural land and data unit conversion.