DOI QR코드

DOI QR Code

Temperature and Solar Radiation Prediction Performance of High-resolution KMAPP Model in Agricultural Areas: Clear Sky Case Studies in Cheorwon and Jeonbuk Province

고해상도 규모상세화모델 KMAPP의 농업지역 기온 및 일사량 예측 성능: 맑은 날 철원 및 전북 사례 연구

  • Received : 2020.11.03
  • Accepted : 2020.12.15
  • Published : 2020.12.30

Abstract

Generation of weather forecasts at 100 m resolution through a statistical downscaling process was implemented by Korea Meteorological Administration Post- Processing (KMAPP) system. The KMAPP data started to be used in various industries such as hydrologic, agricultural, and renewable energy, sports, etc. Cheorwon area and Jeonbuk area have horizontal planes in a relatively wide range in Korea, where there are many complex mountainous areas. Cheorwon, which has a large number of in-situ and remotely sensed phenological data over large-scale rice paddy cultivation areas, is considered as an appropriate area for verifying KMAPP prediction performance in agricultural areas. In this study, the performance of predicting KMAPP temperature changes according to ecological changes in agricultural areas in Cheorwon was compared and verified using KMA and National Center for AgroMeteorology (NCAM) observations. Also, during the heat wave in Jeonbuk Province, solar radiation forecast was verified using Automated Synoptic Observing System (ASOS) data to review the usefulness of KMAPP forecast data as input data for application models such as livestock heat stress models. Although there is a limit to the need for more cases to be collected and selected, the improvement in post-harvest temperature forecasting performance in agricultural areas over ordinary residential areas has led to indirect guesses of the biophysical and phenological effects on forecasting accuracy. In the case of solar radiation prediction, it is expected that KMAPP data will be used in the application model as detailed regional forecast data, as it tends to be consistent with observed values, although errors are inevitable due to human activity in agricultural land and data unit conversion.

KMAPP은 규모상세화 과정을 통해 100 m 단위의 초고해상도 기상 예측을 산출하는 체계로써 최근 수문, 농업, 신재생에너지 등 다양한 분야에서 활용되기 시작됨에 따라 각 분야별로 예측성능을 검증할 필요가 있다. 철원 지역과 전북 지역은 산지가 많은 우리나라에서 비교적 넓은 범위에 걸쳐서 수평면을 보유하고 있으며, 특히 철원은 대규모 벼 논 재배지역 중에서 실측 및 원격탐사 생물계절 자료가 많은 지역으로 KMAPP 예측 성능을 검증하는데 필요한 관측자료를 사용하기에 적절한 지점으로 판단된다. 이번 연구에서는 철원 내 농경지역의 생태적 변화에 따라 변화하는 KMAPP 기온 예측 성능을 AWS와 ASOS 관측자료를 이용하여 비교 검증하였다. 그리고 전북지역 폭염 기간 동안 가축 고온스트레스 모델과 같은 응용모델에 KMAPP 예측 자료를 입력자료로 활용하는 것을 검토하고자 일사량 예측을 ASOS 자료를 이용하여 검증하였다. 더 많은 사례의 수집과 선정이 필요하다는 한계가 있지만 농경지역에서 추수 후 기온 예측 성능이 일반 주택지 에서보다 더 크게 향상된 것을 통해 생물리적 효과가 예측 정확도에 미치는 영향을 간접적으로 추측해 볼 수 있었다. 한편, 일사량 예측의 경우 단위 변환에 따른 오차가 발생하지만 관측값과 일치하는 경향을 보여 KMAPP 자료가 지역규모의 상세 예측 자료로 응용모델에 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 기상청 국립기상과학원 생명농림기상 기술개발(KMA2018-00620)과 농림수산식품기술기획평가원 농촌현안해결 리빙랩 프로젝트사업(120099031SB010)의 지원으로 수행되었습니다. 국가농림기상센터 철원 벼 논 관측지(CRK) 자료를 제공해 주신 사이트 관리자 분들께 감사드립니다.

References

  1. Cho, J. P., J. U. Kim, S. K. Choi, S. W. Hwang, and H. C. Jung, 2020: Variability analysis of climate extreme index using downscaled multimodels and grid-based CMIP5 climate change scenario data. Journal of Climate Change Research 11(2), 123-132. https://doi.org/10.15531/KSCCR.2020.11.2.123
  2. Choi, S. W., S.-J. Lee, J. Kim, B. L. Lee, K. R. Kim, and B. C. Choi, 2015: Agrometeorological observation environment and periodic report of Korea Meteorological Administration: Current status and suggestions. Korean Journal of Agricultural and Forest Meteorology 17(2), 144-155. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.2.144
  3. Hamilton, K., and W. Ohfuchi, 2008: High resolution numerical modelling of the atmosphere and ocean. Springer, 293pp.
  4. Huang, Y., Y. Ryu, C. Jiang, H. Kimm, S. Kim, M. Kang, and K. Shim: 2018: BESS-Rice: A remote sensing derived and biophysical process-based rice productivity simulation model. Agricultural and Forest Meteorology 256, 253-269. https://doi.org/10.1016/j.agrformet.2018.03.014
  5. Hwang, Y., Y. Ryu, Yan Huang, J. Kim, H. Iwata, and M. Kang, 2020: Comprehensive assessments of carbon dynamics in an intermittently-irrigated rice paddy. Agricultural and Forest Meteorology 285, 107933.
  6. Jeong, Y. M., and H. Eum, 2015: Application of a statistical interpolation method to correct extreme values in high-resolution gridded climate variables. Journal of Climate Change Research 6(4), 331-344. https://doi.org/10.15531/KSCCR.2015.6.4.331
  7. Kim, D. H., C. W. Lim, M. S. Joh, J. E. An, I. J. Moon, and S. B. Woo, 2020: A study on parallel optimization of regional ocean model using KISTI 5 th supercomputer Nurion System. Journal of KIISE 47(1), 1-10. https://doi.org/10.5626/jok.2020.47.1.1
  8. Kim, J. H., and D. Kim, 2020: Efficient cloth modeling using boundary CNN based image superresolution method. In Proceedings of the Korean Society of Computer Information Conference, 425-428. Korean Society of Computer Information.
  9. Kim, Y. H., B. G. Seo, H. S. Jeong, D. E. Pyun, K. Y. Kim, and B. J. Kim, 2017: High-resolution weather and climate information estimation through the LDAPS based downscaling system (LDAPS-UKPP-SSPS). Proceedings of the Autumn Meeting of KMS 10, 238-239.
  10. Lee, S.-J., J. Kang, and H. Yoo, 2012: Atmospheric modeling, data assimilation and predictability. Sigma Press Inc., 392pp. (in Korean)
  11. Lee, S. J., S.-J. Lee, and J. Koo, 2020: Database construction of high-resolution daily meteorological and climatological data using NCAM-LAMP: Sunshine hour data. Korean Journal of Agricultural and Forest Meteorology 22(3), 135-143. https://doi.org/10.5532/KJAFM.2020.22.3.135
  12. Min, B., Kim, Y. H., Choi, H. W., Jeong, H. S., Kim, K. R., and Kim, S., 2020: Low-Level Wind Shear (LLWS) forecasts at Jeju international airport using the KMAPP. Atmosphere 30(3), 277-291. https://doi.org/10.14191/ATMOS.2020.30.3.277
  13. Oizumi, T., K. Saito, L. Duc, and J. Ito, 2020: Ultra-high resolution numerical weather prediction with a large domain using the K Computer. Part 2: The case of the Hiroshima heavy rainfall event on August 2014 and dependency of simulated convective cells on model resolutions. Journal of the Meteorological Society of Japan. Ser. II. doi: https://doi.org/10.2151/jmsj.2020-060.
  14. Park, J. H., S.-J. Lee, M. Kang, J. Kim, I. K. Yang, B. G. Kim, and K. G. You, 2018: Suggestions for improving quality assurance and spatial representativeness of Cheorwon AAOS data. Korean Journal of Agricultural and Forest Meteorology 20(1), 47-56. https://doi.org/10.5532/KJAFM.2018.20.1.47
  15. Qiu, L., E. S. Im, J. Hur, and K. M. Shim, 2020: Added value of very high resolution climate simulations over South Korea using WRF modeling system. Climate Dynamics 54(1-2), 173-189. https://doi.org/10.1007/s00382-019-04992-x
  16. Seo, Y. A., Y. H. Kim, and H. S. Jeong, 2018: Bias correction of high-resolution meteorological prediction information in mountainous area using artificial neural network. Proceedings of the Autumn Meeting of KMS 10, 174-174.
  17. Song, J., S.-J. Lee, M. Kang, M. K. Moon, J. H. Lee, and J. Kim, 2015: High-Resolution Numerical Simulations with WRF/Noah-MP in Cheongmicheon Farmland in Korea During the 2014 Special Observation Period. Korean Journal of Agricultural and Forest Meteorology 17(4), 384-398. https://doi.org/10.5532/KJAFM.2015.17.4.384
  18. Song, J., S. J. Lee, and J. Kim, 2015: Effects of highresolution topography/land-cover data and the Noah-MP land surface model on WRF atmospheric simulation in the valley of Gwangneung KoFlux sites. Proceedings of the Spring Meeting of KMS, 109-110.
  19. Yun, J., and Y. H. Kim, 2018: Development and assessment of very high resolution wind resource map over South Korea using intelligent downscailing system. 2018 American Geophysical Union Fall Meeting, GC23D-1227.