• Title/Summary/Keyword: 초고온 미생물

Search Result 15, Processing Time 0.025 seconds

초고압 가공처리의 가열 효과

  • Hong, Seok-In
    • Bulletin of Food Technology
    • /
    • v.15 no.2
    • /
    • pp.107-111
    • /
    • 2002
  • 초고압 가공처리는 별동의 화학 보존제를 사용하지 않고도 저온에서 식품유래 미생물을 사멸시킬 수 있기 때문에 식품분야에서 주목받는 새로운 가공기술이다. 이러한 초고압 처리의 장점 덕분에 관능적 특성이 우수하고 영양성분이 그대로 보존되는 고품질 식품의 제조도 가능하다. 고압 조건에서의 미생물 사멸정도를 측정하기 위해서는 흔히 실험실 규모의 장비(그림 1)을 사용하여 소량의 미생물 접종액을 처리함으로서 대량 처리시(그림 2)의 양상을 예측할 수 있다. 초기에 개발된 실험실 귬의 초고압 처리장비에는 일반적으로 고압용기 내부에 온도감지 장치가 부착되어 있지 않아, 압력 조건 하에서의 압축발열 및 순간 감압냉각 효과가 제대로 보고되지 않았다. 그러나 가열효과를 고려하지 않으면 초고압 처리기 특유의 가압 특성 대문에 실험 결과의 재현성을 얻기가 힘들고, 특히 대용량 생산설비의 경우 더욱 그러하다. 이론적으로 초고압 처리는 매우 예측 가능한 공정이다. 즉 고압요기 내부에서는 어느 지점이던 간에 압력이 고르게 분포되고, 가열 확산에 근거한 처리공정과는 달리 압력이 모든 지점에 순간적으로 공정상 불균일이 야기될 소지가 있는 부분은 오직 압축에 다른 발열과 열 전달에 의한 온도 편차에 기인한다. 실제로 처리 대상 제품과 압력 전달매체의 압축시 발열정도 차이와 시료, 매체, 고압용기 간의 열 손실 또는 열 흡수 대문에 고압처리 공정에서 온도가 일정하지 않을 수 있다.

  • PDF

Evaluation of Complex Odor and Odorous Compounds in a Pilot-Scale Ultra Thermophilic Aerobic Composting Process (초고온 호기성 퇴비화 공정의 복합 악취 및 악취 물질 평가)

  • Park, Seyong;Jung, Dai-Hyuck;Yoo, Eui-Sang;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.33-39
    • /
    • 2009
  • This study was conducted to evaluate production of complex odor and 12 specific odorous compounds in a pilot-scale (capacity : $100m^3$) ultra thermophilic aerobic composting. There were three types input: municipal wasted sludge, livestock manure and slurry, and food waste produced in Jung-Eb city. Each raw material was mixed with seed material and operated for two periods (1st : 50 days, 2nd : 60days). During composting, the temperature hit $90{\sim}95^{\circ}C$ after every mixing in both periods. Therefore, it was concluded that increasing temperature also saves the time which required for composting and high reduction of organics and water contents. The primary odorous compounds were ammonia, methyl mercaltan, dimethyl disulfide and trimethylamine. The concentration of the primary compounds and complex odor during the operation were higher than those on final day and most compounds did not exceed the allowable exhaust standard for odor. Also, it was found that optimal mixing time and control of high temperature are the most important parameters for odor control in ultra thermophilic aerobic composting.

  • PDF

Physicochemical Effect on Ultra Thermophilic Aerobic Composting Process (초고온 호기성 퇴비화의 물리·화학적 인자 평가)

  • Park, Seyong;Yoo, Euisang;Chung, Daihyuck;Lee, Jin;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.27-36
    • /
    • 2010
  • This study was conducted to evaluate physicochemical parameters; temperature, pH, C/N ratio, water content, organic contents and volume in a pilot-scale(capacity : $100m^3$) ultra thermophilic aerobic composting. There were three types input: municipal wasted sludge, livestock manure and slurry, and food waste produced in Jung-Eb city. Each target material was carried out by the first fermentation(organic waste + seed culture) and the second one(organic waste + seed culture + recycle compost), respectively. During composting, only with supply of air and mixing, the temperature increased $90{\sim}105^{\circ}C$ after every mixing in both periods. The changes of pH, $O_2$, $CO_2$ and $NH_3$ represented typical organic decomposition pattern by microorganisms. Also, all other physicochemical parameters of ultra thermophilic aerobic composting process showed similar or better performance than these of general aerobic composting. Heavy metal concentration of fermented compost adapted to compost fertilizer regulation standard in the heavy metal and hazardous analysis.

Acetone, Butanol, Ethanol Production from Undaria pinnatifida Using Clostridium sp. (Clostridium 종을 이용한 미역으로부터 아세톤, 부탄올, 에탄올 (ABE) 생산)

  • Kwon, Jeong Eun;Gwak, Seung Hee;Kim, Jin A;Ryu, Ji A;Park, Sang Eon;Baek, Yoon Seo;Heo, A Jeong;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.236-242
    • /
    • 2017
  • The conversion of marine biomass to renewable energy has been considered an alternative to fossil fuels. Butanol, in particular, can be used directly as a fuel. In this experiment, the brown alga Undaria pinnatifida was selected as a biomass for biobutanol production. Hyper thermal (HT) acid hydrolysis was used as an acid hydrolysis method to produce monosaccharides. The optimal pretreatment conditions for U. pinnatifida were determined as slurry with 10% (w/v) U. pinnatifida content and 270 mM $H_2SO_4$, and heating at $160^{\circ}C$ for 7.5 min. Enzymatic saccharification was carried out with Celluclast 1.5 L, Viscozyme L, and Ultraflo Max. The optimal saccharification condition was 12 U/ml Viscozyme L. Fermentations were carried out for the production of acetone, butanol, and ethanol by Clostridium acetobutylicum KCTC 1724, Clostridium beijerinckii KCTC 1785, and Clostridium tyrobutyricum KCTC 5387. The fermentations were carried out using a pH-control. The optimal ABE fermentation condition determined using C. acetobutylicum KCTC 1724 adapted to 160 g/l mannitol. An ABE concentration of 9.05 g/l (0.99 g/l acetone, 5.62 g/l butanol, 2.44 g/l ethanol) was obtained by the consumption of 24.14 g/l monosaccharide with $Y_{ABE}$ of 0.37 in pH 5.0.

Studies on the Keeping Quality of Ultra High Temperature Processed Market Milk (초고온살균유(超高溫殺菌乳)의 보존성(保存性)에 관(關)한 연구(硏究))

  • Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.158-165
    • /
    • 1979
  • These studies were carried out to investigate the freshness and bacteria of ultra high temperature processed market milks which treated and distributed in four districts: Kwangju, Daejon, Sungwhan and Seoul, and to elucidate their keeping qualities when stored in refrigerator and at room temperature. Various samples taken from the four districts were tested and the results obtained were as follows. 1. Samples from three districts retained acidities fit for standard for 9 days and those from one district for 5 days when stored at $4^{\circ}C$. However, the periods were shortened to 1 day for samples of the three districts and to same day for those of one district when stored at $20^{\circ}C$. 2. Negative results were obtained from alcohol and boiling tests upto 10 days for samples of the three districts and upto 6 to 7 days for those of one district when stored at $4^{\circ}C$. But positive results were recorded after 2 days for samples of the three districts and after 1 day for those of one district when stored at $20^{\circ}C$. 3. Total viable number of organisms did not exceed the standard limit upto 10 days for sample of one district, up to 7 days for those of two districts and upto 2 days for those of the other when stored at $4^{\circ}C$. But in case of storage at $20^{\circ}C$, samples of one district maintained viable titre below the limit for 1 day and samples of three districts for same day. 4. Initial number of psychrophilic were $4.8{\times}10^3/ml$ on an average. This titre was increased to $6.4{\times}10^7/ml$ gradually during 10 days when stored at $4^{\circ}C$, and to $5.2{\times}10^7/ml$ during 2 days. when stored at $20^{\circ}C$. 5. Number of thermoduric bacteria were below $10^2/ml$ for 10 days in samples of three districts and for 6 days in those of the other when stored at $4^{\circ}C$. However, in case of storage at $20^{\circ}C$, the titre exceeded $10^2/ml$ after 1 day in samples of three districts. 6. No coliform bacteria were detected in all samples from the four districts.

  • PDF

Novel substrate specificity of a thermostable β-glucosidase from the hyperthermophilic archaeon, Thermococcus pacificus P-4 (초고온 고세균 Thermococcus pacificus P-4로부터 내열성 β-glucosidase의 새로운 기질 특이성)

  • Kim, Yun Jae;Lee, Jae Eun;Lee, Hyun Sook;Kwon, Kae Kyoung;Kang, Sung Gyun;Lee, Jung-Hyun
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.68-74
    • /
    • 2015
  • Based on the genomic analysis of Thermococcus pacificus P-4, we identified a putative GH1 ${\beta}$-glucosidase-encoding gene (Tpa-glu). The gene revealed a 1,464 bp encoding 487 amino acid residues, and the deduced amino acid residues exhibited 77% identity with Pyrococcus furiosus ${\beta}$-glucosidase (accession no. NP_577802). The gene was cloned and expressed in Escherichia coli system. The recombinant protein was purified by metal affinity chromatography and characterized. Tpa-Glu showed optimum activity at pH 7.5 and $75^{\circ}C$, and thermostability with a half life of 6 h at $90^{\circ}C$. Tpa-Glu exhibited hydrolyzing activity against various pNP-glycopyranosides, with kcat/Km values in the order of pNP-${\beta}$-glucopyranoside, pNP-${\beta}$-galactopyranoside, pNP-${\beta}$-mannopyranoside, and pNP-${\beta}$-xylopyranoside. In addition, the enzyme exhibited exo-hydrolyzing activity toward ${\beta}$-1,3-linked polysaccharide (laminarin) and ${\beta}$-1,3- and ${\beta}$-1,4-linked oligosaccharides. This is the first description of an enzyme from hyperthermophilic archaea that displays exo-hydrolyzing activity toward ${\beta}$-1,3-linked polysaccharides and could be applied in combination with ${\beta}$-1,3-endoglucanase for saccharification of laminarin.

Quality Changes during Storage of Low Salt Fermented Anchovy treated with High Hydrostatic Pressure (초고압 처리한 멸치젓의 저장 중 품질 변화)

  • Lim, Sang-Bin;Jwa, Mi-Kyung;Mok, Chul-Kyoon;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.373-379
    • /
    • 2000
  • Low salt fermented anchovy was stored at $25^{\circ}C$ for a period of 20 days from the time of ultra-high pressure treatment under different operating conditions, such as magnitude of pressure($(200{\sim}500\;MPa)$, temperature$(20{\sim}50^{\circ}C)$ and treatment time$(5{\sim}20\;min)$ with viable cell count(VCC) and quality assessments conducted at regular intervals. VCC decreased logarithmically during storage. Lower values of VCC in the treated samples were observed compared to the untreated. A gradual increase in peroxide value was noticed during storage, compared to those of the untreated which showed a sudden rise. Thiobarbituric acid value decreased initially and remained at that level before rising almost exponentially between 12 and 20 days. Volatile basic nitrogen increased gradually during storage. Amino nitrogen remained almost constant up to 20 days, regardless of any conditions investigated. High pressure treatment maintained better quality during storage at $25^{\circ}C$ by reducing the viable cell count in low salt fermented anchovy.

  • PDF

Changes in Quality of Low Salt Fermented Anchovy by High Hydrostatic Pressure Treatment (초고압처리에 의한 저염 멸치젓의 품질 변화)

  • Lim, Sang-Bin;Yang, Moon-Sik;Kim, Soo-Hyun;Mok, Chul-Kyoon;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.111-116
    • /
    • 2000
  • Effects of ultra-high pressure treatment on viable cell count and quality characteristics of low salt fermented anchovy under different operating conditions such as pressure$(200{\sim}500\;MPa)$, temperature$(20{\sim}50^{\circ}C)$ and treatment time$(5{\sim}20\;min)$ were investigated. Viable cell count decreased gradually with the increase of pressure and suddenly at 400 MPa. It also decreased by seven folds at $50^{\circ}C$ and logarithmically with the increase of treatment time. Peroxide value increased with the increase of pressure, temperature and treatment time, and temperature played a major role. Thiobarbituric acid value was higher by two folds in samples treated than in the untreated regardless of any conditions investigated. Volatile basic nitrogen was almost the same in all samples except the one at $50^{\circ}C$. The sample treated at greater than $30^{\circ}C$ under high hydrostatic pressure indicated higher value in amino nitrogen. Treatment at $20^{\circ}C/300$ MPa/15 min showed greater reductions in viable cell counts, remaining better quality of low salt fermented anchovy.

  • PDF

Bacterial Community Dynamics during Composting of Food Wastes (음식물 쓰레기 퇴비화 과정에 따른 세균군집 구조의 변화)

  • Shin, Ji-Hye;Lee, Jin-Woo;Nam, Ji-Hyun;Park, Se-Yong;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • Composting is a biological process converting solid organic waste into valuable materials such as fertilizer. The change of bacterial populations in a composting reactor of food waste was investigated for 2 months. Based on shifts in temperature profile, the composting process could be divided into the first phase ($2^{\circ}C\sim55^{\circ}C$), the second phase ($55^{\circ}C\sim97^{\circ}C$), and the third phase ($50^{\circ}C\sim89^{\circ}C$). The number of total bacteria was $1.66\times10^{11}$ cell/g, $0.29\times10^{11}$ cell/g, and $0.28\times10^{11}$ cell/g in the first, second, and third stages, respectively. The proportions of thermophiles increased from 33% to 89% in the second stage. T-RFLP analysis and nucleotide sequencing of 16S rRNA gene demonstrated that the change of bacterial community structure was coupled with shifts in composting stages. The structure of bacterial community in the ultra-thermophilic second stage reflected that of seeding starter. The major decomposers driving the ultra-thermophilic composting were identified as phylotypes related to Bacillus and Pseudomonas.

Changes of Chemical, Bacteriological, and Allergenicity of Raw Milk by Gamma Irradiation (감마선 조사 처리에 의한 우유의 화학적${\cdot}$세균학적 및 항원성 변화)

  • Noh, Yeong-Bae;Kim, Seung-Il;Kim, Hyeon-Su;Jeong, Seok-Geun;Chae, Hyeon-Seok;An, Jong-Nam;Jo, Cheol-Hun;Lee, Wan-Gyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • Effects of heat and gamma irradiation on chemical, microbiological, and immunological changes of raw milk were compared. Free fatty acid content of milk showed increasing tendency according to the increase of heating temperature and irradiation dose, and showed similarity in UHT (ultra high temperature) and 5 kGy irradiation. Total bacterial counts and coliforms were not detected after treatment of LTLT (low temperature long time), HTST (high temperature short time), UHT, and irradiation from 1 to 10 kGy in the milk with initial microbial load at $10^3$ CFU/mL initially, but after 7 day storage, were not detected in UHT milk and that irradiated at 3 kGy or above. Heat treatment decreased (p<0.05) arginine, asparate, iso-leucine, lysine, and methionine content compared to raw milk while irradiation decreased (p<0.05) asparate, histidine, iso-luecine, leucine, and lysine content, which means irradiation could change primary structure of milk proteins. It was concluded that f kGy gamma irradiation treatment of raw milk could give a similar effect to UHT treatment in chemical and microbiological viewpoint, and may reduce allergenicity of raw milk.

  • PDF