• Title/Summary/Keyword: 초거대자기저항

Search Result 24, Processing Time 0.022 seconds

철을 미량 치환한 $La_{0. 67}Ba_{0.33}Mn_{1-x}^{57}Fe_xO_3$ (x=0.0, 0.005, 0.01)물질의 자기적 및 중성자 회절연구

  • 최강룡;안근영;심인보;김철성
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.102-103
    • /
    • 2002
  • LaMnO$_3$에 Ca을 치환한 Mn계 perovskite 구조(ABO3)의 물질에서 초거대자기저항 현상이 발견된 이후 R$_{1-x}$$^{3+}$ A$_{x}$$^{2+}$MnO$_3$(R=La, Nd, Pr: 희토류금속, A=Ca, Sr, Ba, Cd, Pb; 2가 양이온)계의 Mn 산화물의 연구가 고감도 자기 저항 센서와 자기기록 등의 활용가능성을 중심으로 활발히 진행되고 있다. 자기적 특성이 뛰어난 초거대자기저항물질에 대한 미시적인 자성에 대한 연구는 그 메커니즘이 복잡하고 다양한 접근방식에 따른다. (중략)

  • PDF

Colossal Magnetoresistance in Chalcogenide Spinels $Ni_xFe_{1-x}Cr_2S_4(X = 0.05, 0.1, 0.2)$ (Spinel 유화물 $Ni_xFe_{1-x}Cr_2S_4(X = 0.05, 0.1, 0.2)$의 초거대자기저항(CMR)현상에 관한 연구)

  • 박재윤
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2001
  • Recently many studies on manganese oxides Ln$_{1-x}$A$_{x}$MnO$_3$(Ln=La, Pr, Nd lanthannide; A=Ca, Sr, Ba, Pb +2 ions) reported CMR properties. CMR have been also found in chalcogenide spinels. We have investigated that Ni ion substitutions for Fe ion have effects on CMR properties in chacogenide spinels Ni$_{x}$Fe$_{1-x}$Cr$_2$S$_4$. It was found that with increasing Ni concentration Jahn-Teller distortion was strengthened and Curie temperature T$_{c}$ was increased. CMR properties could be explained with Jahnl-Teller effect, half-metallic electronic structure, and the alignment of magnetic domain due to the strong magnetic field, which is different in that double exchange interactions dominate CMR properties in manganese oxides.

  • PDF

Effects of NiFeCo of NiFe Insertion Layers on the Giant Magnetoresistance Behavior of Ni/Cu Artificial Superlattice (Ni/Cu 인공초격자에서 NiFeCo 및 NiFe 계면 삽입층이 거대자기저항 거동에 미치는 영향)

  • 송용진;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.963-967
    • /
    • 1995
  • Ultra thin layers of NiFeCo or NiFe were inserted at the interfaces of Ni and Cu to form a multilayer structure. In case of inserting a NiFe layer, the magnetoresistance was about 6%, the saturation magnetic field was 50 Oe and the hysteresis of R-H (resistance-magnetic field) was very small. In case of inserting a NiFeCo layer, the magnetoresistance increased to about 7% but the saturation magnetic field and hysteresis were also increased. The increase of the output under biased magnetic field was much larger in case of inserting a NiFe layer because of relatively smaller hysteresis in R-H behavior.

  • PDF

Double Exchange Interaction in Colossal Magnetoresistance Compounds: $La_{1-\chi}X{\chi}MnO_3$ (초거대 자기저항 $La_{1-x}X_xMnO_3$ 화합물에서의 이중 교환 상호작용)

  • 유운종;이재동;민병일
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.55-67
    • /
    • 1997
  • Double exchange interaction leads to the ferromagnetism by the direct coupling between conduction electrons and magnetic ions. The most intriguing feature of double exchange is the explicit connection of the conductivity with the magnetism, which has drawn much interest in relation to the colossal magnetoresistance (CMR) recently observed in manganese oxide compounds. In this review, we explain the basic physics of double exchange and examine the classical discussions.

  • PDF

Giant Magnetoresistance Phenomenon under the Double Magnetic Fields (이중자장하에서 거대자기저항 현상)

  • 송용진;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.340-346
    • /
    • 1994
  • Change in the electrical resistance of artificial superlattice under two magnetic fields-the main and the secondary magnetic field-has been studied with respect to each magnetic field strength in (200) textured Co/Cu artificial superlattice. When the two magnetic fields were applied in the same direction, lateral shift of the magnetoresistance curve occurred, while splitting phenomenon of the maximum resistance appeared when the two magnetic fields were applied at the right angle. When the angle between the two magnetic fields became $45^{\circ}$ shifting as well as splitting occurred in the magnetoresistance curve. This magnetoresistance behavior with double magnetic fields in the artificial superlattices could be explained with the macroscopic spin alignment model newly suggested in this work.

  • PDF