• Title/Summary/Keyword: 체적

Search Result 3,574, Processing Time 0.032 seconds

Development and Application of TDR Penetrometer for Evaluation of Soil Water Content of Subsoil (지반의 함수비 평가를 위한 관입형 TDR 프로브의 개발 및 적용)

  • Hong, Won-Taek;Jung, Young-Seok;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • Dielectric constant depends on the variation of soil water content, and the estimation of soil water content using time domain reflectometry (TDR) has been studied by many researchers. The purpose of this study is the development and application of TDR penetrometer (TDRP) in order to evaluate the soil water content according to the penetration depth. The TDRP consists of cone, sleeve, driving rod, hammer, and guide. Three electrodes, which are used to measure the dielectric constant of soils, are mounted on the surface of sleeve and, in turn, connected with coaxial cable and time domain reflectometer. To establish the relationship between the volumetric water content and dielectric constant, several laboratory tests by using the TDRP are performed in the specimens with a variety of volumetric water content. The experimental results show that the dielectric constant is strongly correlated to volumetric water content as polynomial equations with an order of 3. In addition, the volumetric water content calculated from the dielectric constant is similar to that obtained from the sample weight. In the field, a small sampler is used to compare the volumetric water content calculated from the dielectric constant with the volumetric water content obtained from the sample. The results of field application demonstrate that the volumetric water content estimated by the TDRP shows similar trend to the gravimetric water content of sample. This study suggests that the TDRP is effectively used to evaluate the volumetric water content of unsaturated soils according to the penetration depth.

Liver Cut Method Using 4 Points for Hepatic Volumerty at MDCT Image (MDCT 영상에서 간 체적 계산을 위한 4 점 이용 간 분할 방법)

  • Seo, Jeong-Joo;Cho, Baik-Hwan;Park, Jong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • This paper proposed the method to separate a liver into left and right liver lobes for exact volumetry of the river graft at abdominal MDCT(Multi-Detector Computed Tomography) image before living donor liver transplantation. On the image of segmented liver, 4 points(the middle point of Inferior Vena Cava, a point of Middle Hepatic Vein, a point of Portal Vein, a middle point of gallbladder fossa) are selected. A liver is separated into left and right liver lobes on the basis of the 4 points. The volume and ratio of the river graft are estimated. The volume estimated using 4 points and the manual volume that radiologist processed and estimated are compared with the weight measured during surgery to support proof of the exact volumetry. After selection the 4 points, the time involved in separation a liver into left and right river lobe and volumetry of them is measured for confirmation that the algorithm can be used on real time during surgery. This study progressed to ensure donor's and recipient's safe who will undergo the liver transplantation.

Effect of Residual Shear Strain on the Relationship between Volumetric Strain and Effective Stress after Liquefaction (액상화 후 잔류전단변형률이 체적변형률과 유효응력 관계에 미치는 영향)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.55-62
    • /
    • 2010
  • The settlements by liquefaction seldom occur uniformly because of soil homogeneity, however differential settlements are major cause of the damages to structures. From the past researches, author paid attention to the fact that stress history during undrained cyclic shear process affects greatly on the volumetric strains of the post-liquefaction. Therefore, the effect of the residual shear strain in cyclic shear process was examined in this study. The experiment apparatus based on strain control with volumetric strain control device was used for the study to investigate the effect of the residual strain on the relationship between volumetric strain and effective stress of clean and granite sandy soil. It could be seen an insignificant difference in the volumetric strain after liquefaction under various residual shear strain conditions in the case of clean sand. On the other hand, in granite sandy soil, the volumetric strain after liquefaction was small when the lower level of the residual shear strain was applied. And, the residual shear strain during cyclic shear affected the shape of the relation curve between effective stress and volumetric strain as well.

Volume Change of Spiral Computed Tomography due to the Changed in the Parameters (파라미터의 변경에 따라 나선형 전산화 단층 촬영의 체적 변화)

  • Lee, JunHaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.307-311
    • /
    • 2013
  • This study examined the change of artifact volume by analyzing the level of image change associated with the setting of threshold through 3D imaging in scan parameter(slice thickness and helical pitch) and 3D image reconstruction to explore whether the presence of pathology was fully distinguished when CT was taken by lower dose than the existent dose to reduce exposure. Furthermore, this study attempted to investigate Scan Parameter acceptable in CT to reduce exposure dose. For materials and methods, silicon was used to produce samples. Five spherical samples were produced at 10-millimeter intervals(50, 40, 30, 20, and 10 mm) in diameter and were fixed at 120 Kvp of tube voltage and 50 mA of tube current. Varied slab thickness((1.0, 2.0, 3.0, 5.0, and 7.0mm) and Helical Pitch(1.5, 2.0, 3.0) were scanned. The image at an interval of 1.0, 2.0, 3.0, 5.0, and 7.0mm was transmitted to the workstation. Threshold(-200, -50, 50 ~ 1,000) was changed using the volume rendering technique, 3D image was reconstructed, and artifact volume was measured. In conclusion, 1.5 of Helical Pitch showed the least change of volume and 3.0 of helical pitch showed the greatest reduction of volume change. The experiment suggested that as slice thickness was increased, artifact volume was decreased more than actual measurement. Furthermore, in the 3D image reconstruction, when the range of threshold was set as -200 ~1,000, artifact volume was changed the least. Based on the results, it is expected to have an effect of reducing exposure dose.

Evaluation of Dose Variation according to Air Gap in Thermoplastic Immobilization Device in Carbon Ion (탄소입자 치료 시 열가소성 고정기구의 공기층에 따른 선량 변화 평가)

  • Ye-jin Na;Ji-Won Jang;Se-Wuk Jang;Hyo-Kuk Park;Sang-Kyu Lee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: The purpose of this study is to find out the dose variation according to thickness of the air gap between the patient's body surface and immobilization device in the treatment plan. Materials and Methods : Four conditions were created by adjusting the air gap thickness using 5 mm bolus, ranging from 0 mm to 3 mm bolus. Immobilization was placed on top in each case. And computed tomography was used to acquire images. The treatment plan that 430 cGy (Relative Biological Effectiveness,RBE) is irradiated 6 times and the dose of 2580 cGy (RBE) is delivered to 95% of Clinical Target Volume (CTV). The dose on CTV was evaluated by Full Width Half Maximum (FWHM) of the lateral dose profile and skin dose was evaluated by Dose Volume Histogram (DVH). Result: Results showed that the FWHM values of the lateral dose profile of CTV were 4.89, 4.86, 5.10, and 5.10 cm. The differences in average values at the on the four conditions were 3.25±1.7 cGy (RBE) among D95% and 1193.5±10.2 cGy (RBE) among D95% respectively. The average skin volume at 1% of the prescription dose was 83.22±4.8%, with no significant differences in both CTV and skin. Conclusion: When creating a solid-type immobilization device for carbon particle therapy, a slight air gap is recommended to ensure that it does not extend beyond the dose application range of the CTV.

  • PDF

Electical and Electomagnetic wave Absorbing Properties of MnZn Ferrite-Rubber Composites in Microwave Frequencies (MnZn계 페라이트-고무 복합체의 마이크로파대역에서의 전기적 특성 및 전자파 흡수 특성)

  • 김호철;이병택;정연춘;엄진섭
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.2
    • /
    • pp.41-47
    • /
    • 1993
  • Electrical and electromagnetic wave absorbing properties of MnZn ferrite-rubber composites have been examined for varying the volume fraction of ferrite powder from 0.1 to 0.4 in the frequency range between 1-10 GHz. As the volume fraction of MnZn ferrite increased, the complex permittivity and permeability of composite increased. The peak of reflection loss at the frequency corresponding to 1/4 wavelength shifts to lower frequency, and shifts to lower frequency as the thickness of absorber increased. We show that for the ferrite-rubber composites the volume fraction of ferrite should be controled to obtain the absorbing properties required in given frequency range.

  • PDF

The Effect of the Volume of the Cellular Bulkhead on the Yield Load (셀 구조물의 항복하중에 미치는 체적의 영향)

  • Jang, Jeong-Wook;Kim, Hyun-Guk;Lee, Jae-Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.197-201
    • /
    • 2015
  • Experimental and numerical analysis has been carried out in this paper to understand correlation between volume and yield of cellular bulkhead. It was firstly confirmed from these results that the conditions and parameters considered in the finite element analysis were reasonable and realistic due to the fact that the yield loads determined by the two different methods were equivalent in actual. Based on this results, a series of intensive numerical analysis has been further performed and revealed that the yield load varied in direct proportion to the change in the volume of the cellular bulkhead.

A Theoretical Analysis on Pressure Loss and Gas Volumetric Fraction of Gas-Liquid Two-Phase Flow (기액이상류의 압력손실과 가스상의 체적분율에 관한 이론적 해석)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.63-69
    • /
    • 2009
  • Gas volumetric fractions and pressure loss are very important parameters in understanding and predicting gas-liquid two-phase flows. They are also essential to design large heat exchanging system in many industries, boiler and refrigerating systems mounted at ships. This paper therefore presents a theoretical method of predicting the pressure loss and gas volumetric fractions in gas-liquid two-phase flows for the whole range of pipe inclinations. The theoretical analysis is based on the two-fluid stratified flow model. It also provides the results of the comparisons between this theoretical analysis results and previous experimental results.

  • PDF

Developement of a 2D Numerical Model Using th WAF Method (WAF기법을 이용한 2차원 유한체적모형의 개발)

  • Han, Kun-Yeun;Kim, Byung-Hyun;Kim, Tae-Hyung;Lee, Dong-Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1742-1746
    • /
    • 2008
  • 지금까지의 대부분의 2차원 수리해석 모형은 상류와 사류가 혼재된 불연속적인 천이류 흐름을 해석하기에 계산의 정확도 및 현실성에서 많은 문제를 보이고 있으며, 특히 계산과정에서 나타날 수 있는 마른하도의 처리에 있어서 많은 어려움을 겪고 있다. 본 연구의 목적은 유한체적기법을 사용하여 상류와 사류가 혼재하는 불연속적인 하천 천이류를 안정적으로 해석하기 위해 개발된 고정확도 수치모형의 자연하도 적용에 있으며, 또한 마른 하도로 전파되는 흐름 모의 및 계산과정에서 나타날 수 있는 마른하도 처리의 어려움을 해결함으로써 모형의 정확도와 안정성을 검증하여 실제 하천에서의 모형 적용성을 검토함에 있다. 이를 위해 본 연구에서는 흐름의 전파양상을 정확하게 반영할 수 있는 상류이송기법인 Godunov 기법과 관심격자의 좌우 격자 정보를 모두 사용하는 대표적 중앙차분기법인 Beam-Warming 기법의 장점을 모두 반영한 가중평균흐름률 (Weighted Average Flux) 기법을 사용하여 사각격자망의 구성을 통해 자연하도에 적용시킬 수 있는 2차원 유한체적모형을 개발하고자 하였고, 개발된 모형의 안정성, 정확도, 적용성을 검증하기 위해 직사각형 수로, 큰 사행비를 가진 만곡수로에 적용하고, 그 결과를 수리모형 실험결과와 비교, 분석하였다.

  • PDF

Primary study on evaluation of wetting front distribution for weathered soil (토층 사면에서의 침윤선 분포 특성 파악을 위한 실험 연구)

  • Kim, Man-Il;Chae, Byung-Gon;Seo, Yong-Seok;Kim, Hyeun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1395-1399
    • /
    • 2008
  • 국내 토층 사면을 대상으로 강우에 의해 발생되는 침투수 거동 특성을 분석함으로써 지속적인 토층의 물성 변화 계측을 통해 산사태 예 경보시스템을 구축이 가능하다. 본 연구에서는 산사태 예 경보시스템 구축의 사전 단계로써, 국내 대표적인 지질 매질인 화강암 풍화토, 편마암 풍화토와 주문진 표준사에 대해 공극률과 체적함수비 등의 토질 물성 변화를 고려한 실내 보정실험을 수행하였다. 실험조건은 공극률, 체적함수비 변화에 대한 측정센서의 측정 정밀도 향상과 이를 통해 국내 현장토에 대한 고유 보정기법을 제시하기 위함이다. 측정센서는 각 실험 조건별 물성 변화에 따라 전압을 측정함으로써 현장토에 대한 물성치와 상호 분석이 가능하도록 하였다. 주문진 표준사 뿐만 아니라 국내 현장토인 화강암 풍화토와 편마암 풍화토에 대한 체적함수비에 대한 보정식도 함께 제시하였다.

  • PDF