• 제목/요약/키워드: 체적소성가공

검색결과 20건 처리시간 0.022초

공작기계 기술의 현재와 미래(17) (Machine Tool Technology; The Present and the Future(17))

  • 강철희
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.13-27
    • /
    • 1996
  • 소성가공이란 원재료를 소성변형(Plastic deformation)을 통해서 고체의 제품을 만드는 가공법이다. 가공중에 물체의 질량과 체적에는 크게 변화가 없다. 소성 가공중 주응력이 어떻게 작용하느냐에 따라서 소성가공을 여러가지로 분류하고 있다. 즉, Metal Forming은 다음과 같이 분류할 수 있다. 1) Compound Forming에는, Rolling, Free forming, Die forming, Stamping, Pressing 2) Tension compression forming에는, Drawing, Deep-drawing, Rimming, Spinning, Bulge forming 3) Tension forming에는 Lengthening, Widning, Deepening 4) Bending에는 Bending with linear tool motion, Bending with rotary tool motion 5) Thrust forming에는 Swaging, Twisting이 있다.

  • PDF

체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰 (Consideration on Frictional Laws and their Effect on Finite Element Solutions in Bulk Metal Forming)

  • 전만수;문호근;황상무
    • 한국정밀공학회지
    • /
    • 제13권2호
    • /
    • pp.102-109
    • /
    • 1996
  • Effects of frictional laws on finite element solutions in metal forming were investigated in this paper. A rigid-viscoplastic finite element formulation was given with emphasis on the frictional laws. The Coulomb friction and the constant shear friction laws were compared through finite element analyses of compression of rings and cylinders with different aspect ratios, ring-gear forging, multi-stage cold extrusion and hot strip rolling under the isothermal condition. It has been shown that two laws may yield quite different results when the aspect ratio of a process and the fractional contact region are large.

  • PDF

체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰 (Consideration on Friction Laws and their Effect on Finite Element Solutions in Buk Metal Forming)

  • 전만수;문호근;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.233-237
    • /
    • 1995
  • Effects of frictional laws on finite element solutions in bulk metal forming were investigated in this paper. The Coulomb friction and the constant shear friction law were compared through finite element anlayses of compression of ring and cylinders with different aspect rations, ring-gear forging and hot strip rollin under the isothermal condition. It has been shown that two laws may yield quite different results inthe case that the aspect ration of a process is large, for example , strip rolling and ring -gear forging and that the difference depends mainly on the aspect ratio and the friction.

  • PDF

분말단조 해석을 위한 다공질 합금강 프리폼의 고온 업셋

  • 김기태;조윤호
    • 소성∙가공
    • /
    • 제1권2호
    • /
    • pp.14-19
    • /
    • 1992
  • 분말단조 공정의 해석을 위한 기초연구로서 고용 업셋에 의한 다공질 합금강 프리폼의 치밀화와 소성 변형거동에 관하여 조사하였다. 다공질 프리폼의 소성 유동응력은 용도의 상승에 떠라 감소하였고, 변형속도의 증가에 따라 증가함을 보였다. 또한, 다공질 프리폼의 초기밀도가 더 높을수록 동일한 온도와 하중조건에서 더 높은 치밀화를 보였다. 또한, 밀도변화에 따른 프와송 비를 실험치로 부터 구하였고, 배불림 현상과 체적변화를 고려하여 온도에 따른 진응력-진변형률 관계를 구하였다.

  • PDF

마찰에 민감한 긴 파이프의 축관 및 확관 동시공정의 해석을 통한 마찰법칙의 평가 (Evaluation of Frictional Laws through Analyzing a Friction-Sensitive Long-Pipe Shrinking and Expanding Process)

  • 최인수;엄재근;전병윤;이민철;전만수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1481-1486
    • /
    • 2007
  • Frictional laws are criticized with emphasis on their application to bulk metal forming simulation in this paper. Coulomb frictional law and constant shear frictional law are investigated in detail in terms of their effect on metal forming process. A friction sensitive bulk metal forming process, a long-pipe simultaneously shrinking and expanding process, is introduced and the problems of the constant shear frictional law are revealed comparing the predictions obtained by the Coulomb frictional law and the constant shear frictional law with the experiments. It is shown that the constant shear frictional law is improper in the case that the normal stress varies very much from position to position and that the normal stress is low compared with flow stress of the adjacent material. It is also shown that the Coulomb frictional constant is more or less affected by the normal stress.

  • PDF

유한체적법을 이용한 업셋터 단조공정의 컴퓨터 시뮬레이션 (Computer Simulation of Upsetter Forging Processes that uses Finite Volume Method)

  • 김홍태;박성용;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.170-175
    • /
    • 2007
  • The finite volume method for forging simulation is examined to reveal its possibility as well as its problem in this paper. For this study, the finite volume method based MSC/SuperForge and the finite element method based AFDEX are employed. The simulated results of the homogeneous compression obtained by the two softwares are compared to indicate the problems of the finite volume method while several application examples are given to show the possibility of the finite volume method for simulation of upsetter forging processes. It is shown that the finite volume method can not predict the exact solution of the homogeneous compression especially in terms of forming load and deformed shape but that it is helpful to simulate very complex forging processes which can hardly be simulated by the conventional finite element method.

  • PDF

고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법 (A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow)

  • 이석원;윤재륜
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

박판성형의 초기소재 설계시스템 (Blank Design System for Sheet Forming)

  • 김두현;이정민;박상후;양동열;김용환
    • 소성∙가공
    • /
    • 제6권5호
    • /
    • pp.400-407
    • /
    • 1997
  • Geometric mapping technique has been used to find the shape of initial blank for sheet forming. The method was chosen because of its simplicity and numerical efficiency. Error in blank shape were measured along deformation path by FE analysis of forming. Blank shape was modified by volume additionaddition/Subtractiontraction method with taking with taking into account of deformation path. Modified blank shape shows an acceptable result, showing the current method can be an useful tool for predicting blank shape in the practical application. More test will be done to verify the validity of the method.

  • PDF