• Title/Summary/Keyword: 체적변형

Search Result 302, Processing Time 0.035 seconds

Clinical Application of Dose Reconstruction Based on Full-Scope Monte Carlo Calculations: Composite Dose Reconstruction on a Deformed Phantom (몬테칼로 계산을 통한 흡수선량 재구성의 임상적 응용: 변형된 팬텀에서의 총제적 선량재구성)

  • Yeo, Inhwan;Xu, Qianyi;Chen, Yan;Jung, Jae Won;Kim, Jong Oh
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.139-142
    • /
    • 2014
  • The purpose of this study was to develop a system of clinical application of reconstructed dose that includes dose reconstruction, reconstructed dose registration between fractions of treatment, and dose-volume-histogram generation and to demonstrate the system on a deformable prostate phantom. To achieve this purpose, a deformable prostate phantom was embedded into a 20 cm-deep and 40 cm-wide water phantom. The phantom was CT scanned and the anatomical models of prostate, seminal vesicles, and rectum were contoured. A coplanar 4-field intensity modulated radiation therapy (IMRT) plan was used for this study. Organ deformation was simulated by inserting a "transrectal" balloon containing 20 ml of water. A new CT scan was obtained and the deformed structures were contoured. Dose responses in phantoms and electronic portal imaging device (EPID) were calculated by using the XVMC Monte Carlo code. The IMRT plan was delivered to the two phantoms and integrated EPID images were respectively acquired. Dose reconstruction was performed on these images using the calculated responses. The deformed phantom was registered to the original phantom using an in-house developed software based on the Demons algorithm. The transfer matrix for each voxel was obtained and used to correlate the two sets of the reconstructed dose to generate a cumulative reconstructed dose on the original phantom. Forwardly calculated planning dose in the original phantom was compared to the cumulative reconstructed dose from EPID in the original phantom. The prescribed 200 cGy isodose lines showed little difference with respect to the "prostate" and "seminal vesicles", but appreciable difference (3%) was observed at the dose level greater than 210 cGy. In the rectum, the reconstructed dose showed lower volume coverage by a few percent than the plan dose in the dose range of 150 to 200 cGy. Through this study, the system of clinical application of reconstructed dose was successfully developed and demonstrated. The organ deformation simulated in this study resulted in small but observable dose changes in the target and critical structure.

Tissue conditioner in edentulous patients, depending on the time and the thickness of the changes affect the dimensional stability (무치악 환자에서 조직양화제(tissue conditioner)가 시간과 두께에 따라 체적안정성의 변화에 미치는 영향)

  • Shim, Youn-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3794-3801
    • /
    • 2010
  • This study evaluated the linear dimensional changes with the factor of time and thickness using of three commercially available tissue conditioners (Coe-Comport, Visco-Gel, Soft-Liner). The thickness of materials were changed (1.5mm, 3.0mm) and the percentage changes in dimension were measured at 1h(baseline), 12h, 24h, 3 days and 7days after specimen preparation. The obtained data were analyzed by ANOVA with the SAS/PC statistical package. From the results, large differences appear between the various tissue conditioners. The results suggested that the period recommended for forming functional impression would be 36h to 3days after insertion in the mouth. Depending on the type of tissue conditioner over time, as there were significant differences in the elastic change(p<0.05). Tissue conditioner of the 1.5mm, 3.0mm thickness were significantly different by the dimensional stability(p<0.05). Elastic deformation of the ideal itself, and resilient when compared only the look, Visco-Gel 3.0mm group, stability was the most stable volume. In addition, it is important to select tissue conditioners suitable for functional impression because of the wide range of dimensional stability among the materials.

Numerical Analysis of Stress-Strain Behavior of Geofoam (지오폼의 응력-변형률 거동의 수치적 해석)

  • Chun, Byung-Sik;Lim, Hae-Sik;Ahn, Tae-Bong;Lee, Cheol-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.77-88
    • /
    • 2000
  • 연약지반상에 하중 경감을 목적으로 발포성 폴리스티렌(Expanded Polystyrene)을 사용하는 사례가 최근 꾸준히 증가하고 있다. 공법의 요점은 연약지반상에 축조되는 상부구조물에 의한 응력증가를 감소시켜서 결국에는 침하를 방지하기 위한 것이다. 이것을 지오폼(geofoam)이라고 하는데, 지오폼은 교대나 옹벽의 뒷채움재로 사용할 경우 횡토압을 감소시키기 때문에 옹벽이나 교대의 뒷채움재료로 사용하기도 한다. 이와 같이 그 사용이 꾸준히 증가하고 있지만 뒷채움이나 연악지반상에 사용할 때 지오폼의 거동을 예측하는 적절한 수치모델이 아직은 개발되자 않았다. 본 연구에서는 지오폼의 응력-변형 특성을 연구하고 그 탄소성 예측모델을 제시하였다. 이를 위하여 삼축압축시험을 실시하였으며 구속응력과 지오폼의 밀도를 다양하게 변화시켜 그 응력-변형특성을 조사하고 회귀분석을 통하여 비선형 구성모델을 제시하였다. 그 결과 지오폼은 탄성 선형모델보다 탄소성모델 특성에 더 가까운 것을 알 수 있었으며 체적변화율과 축방향 변형률에는 특별한 상관 관계가 있음을 알 수 있었다.

  • PDF

Hyper-ellipsoidal clustering algorithm using Linear Matrix Inequality (선형 행렬 부등식을 이용한 타원형 클러스터링 알고리즘)

  • 이한성;박주영;박대희
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.215-218
    • /
    • 2002
  • 본 논문에서는 타원형 클러스터링을 위한 거리측정 함수로써 변형된 가무시안 커널 함수를 사용하며, 주어진 클러스터링 문제를 각 타원형 클러스터의 체적을 최소화하는 문제로 해석하고 이를 선형행렬 부등식 기법 중 하나인 고유값 문제로 변환하여 최적화하는 새로운 알고리즘을 제안한다.

  • PDF

Feasibility Study on Diagnosis of Material Damage Using Bulk Wave Mixing Technique (체적파 혼합기법을 이용한 재료 손상 진단 적용 가능성 연구)

  • Choi, Jeongseok;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • Ultrasonic nonlinear evaluation is generally utilized for detection of not only defects but also microdamage such as corrosion and plastic deformation. Nonlinearity is determined by the amplitude ratio of primary wave second harmonic wave, and the results of its comparison are used for evaluation. Owing to the experimental features, the experimental nonlinearity result contains system nonlinearity and material nonlinearity. System nonlinearity is that which is unwanted by the user; hence, it acts as an error and interrupts analysis. In this study, a bulk wave mixing technique is implemented in order to minimize the system nonlinearity and obtain the reliable analysis results. The biggest advantage of this technique is that experimental nonlinearity contains less system nonlinearity than that for the conventional nonlinear ultrasonic technique. Theoretical and experimental verifications are performed in this study. By comparing the results of the bulk wave mixing technique with those of the conventional technique, the strengths, weaknesses, and application validity of the bulk wave mixing technique are determined.

A Constitutive Model for Rotation of Principal Stress Axes during Direct Simple Shear Deformation (직접단순전단변형에 따른 주응력 방향의 회전을 고려한 구성모델)

  • Park, Sung-Sik;Lee, Jong-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.53-62
    • /
    • 2008
  • A constitutive model, which can simulate the effect of principal stress rotation associated with direct simple shear test, is proposed in this study. The model is based on two mobilized planes. The plastic strains occur from the two mobilized planes, and depend on stress state, and they are added. The first plane is a plane of maximum shear stress, which rotates about the horizontal axis, and the second plane is a horizontal plane which is spatially fixed. The second plane is used to consider the effect of principal stress rotation on simple shear tests under different stress states. The soil skeleton behavior observed in drained simple shear tests is captured in the model. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC. The model is first calibrated with drained simple shear tests on loose Fraser River sand. The measured shear stress and volume change are partially induced by principal stress rotation and compared with model calculations. The model is verified by comparing predicted and measured settlements due to rigid footing resting on loose sands. Settlements predicted by the proposed model were very similar to measured settlements. Mohr-Coulomb model can not consider the effect of principal stress rotation and its prediction was only 20% of measured settlements.

Recompression Properties of Sand in Post-Liquefaction Process According to Relative Density and Cyclic Loading History (상대밀도와 반복전단이력의 차이에 의한 모래의 액상화 후 재압축 특성)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • Ground failure by liquefaction can occur not only during shaking but also as the result of the post-liquefaction process after an earthquake. During the process of ground deformation and failure, excess pore water pressure in soil is redistributed, which can then lead to changes in the effective stress of soils. Therefore, in order to provide a further understanding of the phenomenon, we have to estimate the properties of effective stress during the recompression process in post-liquefaction as well, not only the total amount of pore water drained. The primary objectives of this study are to determine and compare the recompression properties in the post-liquefaction process in terms of the relationship between volumetric strains and mean effective stresses under the various conditions of relative density and shear stress history. In all experimental cases, the volumetric strains increase greatly in the low effective stress level, almost to the zero zone, and granite soil, which has fine grains, undergoes gradual changes in the relationship between volumetric strains and mean effective stresses compared with fine sand. And, we can also find that recompression properties in the post-liquefaction process by cyclic loading depend highly on the dissipation energy and maximum shear strain, and this fact can be obtained in all cases regardless of the existence of fine content, relative density, and loading history. Especially, granite soil having fine grains can be defined uniformly in the relationship between dissipation energy and maximum volumetric strain, while fine sand cannot be so uniformly defined.

Numerical Analysis of Viscoelastic Cylinders with Mode I Cracks (점탄성 원통의 모드 I 균열 해석)

  • Sim Woo-Jin;Oh Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.259-269
    • /
    • 2006
  • In this paper, the stress intensity factor, energy release rate and crack opening displacement are computed using the finite element method for axisymmetric viscoelastic cylinders with the penny-shaped and circumferential cracks. The triangular elements with quarter point nodes are used to describe the stress singularity around the crack edge. The analytical solutions are also derived by using the elastic-viscoelastic correspondence principle and compared with the numerical results to show the validity and accuracy of the presented method. Viscoelastic materials are assumed to behave elastically in dilatation and like a three-parameter standard linear solid.

Prediction of Thermoelastic Constants of Unidirectional Porous Composites Using an Unmixing-Mixing Scheme (분리-혼합 기법을 이용한 일방향 다공성 복합재료의 열탄성 계수 예측)

  • Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.34-39
    • /
    • 2012
  • A thermo-poro-elastic constitutive model of unidirectionally fiber-reinforced composite materials is suggested by extending the unmixing-mixing scheme which is based upon composite micromechanics. The strain components of thermal expansion due to a temperature change, gas pressure in pores, and chemical shrinkage are included in the constitutive model. On purpose to verify the derived constitutive relations, the representative volume element of two-dimensional lamina subject to various loading conditions is analyzed by the finite element method. The overall stress and strain responses are obtained, and compared with the predicted values by the unmixing-mixing scheme. The numerical results show the usefulness of the proposed model to predict the thermoelastic behavior of porous composites.