• Title/Summary/Keyword: 청정효과

Search Result 345, Processing Time 0.028 seconds

Comparison Study on Efficacies of Disinfectants and Sanitizers Among Methods for Quantitative Surface Test (살균소독제의 정량적 표면시험방법별 유효성 비교)

  • Kim, Ae-Young;Kim, Yong-Su;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.238-244
    • /
    • 2010
  • Currently, in vitro suspension tests using tubes are used as a authorized test method for sanitizers and disinfectants. However, the methods could not accurately assess the efficacy of sanitizers and disinfectant on the food-contacted surfaces in the field. This study evaluated the effectiveness of 5 kinds of representative sanitizers and disinfectants against E. coli and S. aureus to compare three quantitative surface testing methods that have been internationally standardized. As a result, the ASTM E2111-05 (ASTM(1)) test method obtained 5.18 $\pm$ 0.03 and 5.27 $\pm$ 0.04 log cfu/carrier reduction in dealing with E. coli and S. aureus, respectively, the ASTM E2197-02 (ASTM(2)) test method obtained 4.63 $\pm$ 0.04 and 3.97 $\pm$ 0.03 log cfu/carrier reduction and the CEN EN 13697 test method should 6.14 $\pm$ 0.05 and 5.31 $\pm$ 0.10 log cfu/carrier reduction in clean condition (CEN(1)) but 4.37 $\pm$ 0.02 and 4.06 $\pm$ 0.01 log cfu/carrier reduction in dirty condition (CEN(2)). Among them, CEN(1) showed the highest bactericidal effects, whereas ASTM(2) and CEN(2) revealed low performance (p < 0.05). In conclusion, the bactericidal effects of the ASTM(2) method and the CEN EN 13697 method adopting stainless steel were lower than the ASTM(1) method, which uses glass. The effectiveness assessment results among nationally accredited test methods were different each other. This implies that they could not fit for in the accurate evaluation of sanitization and disinfection on food-contact surfaces in practical food-processing fields. These results could be used as a basic data for establishment of an official surface test methods applicable in the field.

Detection of IgY Specific to Salmonella enteritidris and S. typhimurium in the Yolk of Commercial Brand Eggs using ELISA (ELISA 방법으로 계란의 난황에 존재하는 Salmonella enteritidis와 S. typhimurium에 대한 IgY 측정)

  • 이승배
    • Food Science of Animal Resources
    • /
    • v.23 no.2
    • /
    • pp.161-167
    • /
    • 2003
  • Identification of salmonellosis-infected commercial poultry flocks has become a pivotal component of efforts to reduce incidence of egg-associated transmission of S. enteritidis and S. typhimurium to humans. As a basic study for sanitary control of S. enteritidis and S. typhimurium, main food-borne pathogenic bacteria in eggs produced by domestic hens, commercial egg samples were tested for specific antibodies to whole cells of S. enteritidis and S. typhimurium and outer membrane protein(OMP) of S. typhimurium by ELISA to detect infection of S. enteritidis and S. typhimurium in various groups of hens. When the antibody titers of yolks from three commercial brand eggs were tested after diluting in the ratio from 1:100 to 1:1,600 with double dilution method, ELISA values of the specific antibodies could be shown as differences in dilution patterns by comparing with negative control egg. When the antibody titers of the yolks from two commercial brand eggs were tested after diluting in the ratio of 1:200 and 1:1,000, ELISA values of specific antibodies were different among same brand eggs. When the antibody titers of yolks from five eggs sampled randomly from twenty one commercial brand eggs were tested after diluting in the ratio of 1:1,000, ELISA value of the specific antibodies were shown generally high. ELISA values of 28.5, 30, and 28.5% of yolks from 21 brand eggs were shown low and similar to negative control egg in antibody titers to whole cells of S. enteritidis and S. typhimurium and OMP of S. typhimurium, respectively. The results demonstrated that ELISA test of egg yolk antibody could provide a highly sensitive indicator to detect contamination of S. typhimurium and S. enteritidis in poultry, and could be used effectively to reduce incidence of S. typhimurium and S. enteritidis infection in poultry.

Treatment of Cu(II)-EDTA using Solar/$TiO_2$ Photocatalysis (태양광/$TiO_2$ 광산화를 이용한 Cu(II)-EDTA의 제거)

  • Shin, In-Soo;Lee, Seung-Mok;Yang, Jae-Kyu;Shin, Won-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Photocatalytic oxidation of Cu(II)-EDTA has been studied using solar/$TiO_2$ photocatalysis as an energy source. Photocatalysis efficiency on the treatment of Cu(II)-EDTA was investigated using different types of solar collectors as well as by variation of the angles of solar collector solar light intensities, flow rates, and areas of solar collector. effect of $H_2O_2$ and types of $TiO_2$ catalyst on the treatment of Cu(II)-EDTA was also investigated. Removal of Cu(II) and DOC was favorable with a hemispherical collector than with a flat collector Removal of Cu(II) and DOC increased with increasing angles of solar collector up to $38^{\circ}$. Slurry type $TiO_2$ showed four-times higher removal efficiency than immobilized type $TiO_2$. Removal of both Cu(II) and DOC at a clear sky of solar light intensity ranging from 0.372 to $2.265\;mW/cm^2$ was greater than removal at a cloudy day of solar light intensity ranging from 0.038 to $1.129\;mW/cm^2$. From the result of this research that the removal efficiency of Cu(II) and DOC increased as the solar light intensity increased, it can be inferred that quantum yield in the destruction of Cu(II)-EDTA may directly related with the solar light intensity. Removal of Cu(II) increased as increasing the area of solar collector and was similar at lower flow rates white removal of Cu(II) was interfered at higher flow rates. When immobilized $TiO_2$ was used, removal efficiency of Cu(II) increased in the presence of $H_2O_2$ while negligible effect was found in the use of $TiO_2$ slurry.

Bioactive Materials and Biological Activity in the Extracts of Leaf, Stem Mixture and Root from Angelica gigas Nakai (참당귀 잎, 줄기혼합물과 뿌리 추출물의 생리활성물질 및 그 활성작용)

  • Heo, Jin-Sun;Cha, Jae-Young;Kim, Hyun-Woo;Ahn, Hee-Young;Eom, Kyung-Eun;Heo, Su-Jin;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.750-759
    • /
    • 2010
  • The bioactive materials (phenolic compounds, flavonoids, minerals, decursin and decursinol angelate) and biological activities (DPPH [$\alpha,\alpha$'-diphenyl-$\beta$-picrylhydrazyl] free radical scavenging capability, reducing power, and tyrosinase activity) in the extracts of leaf, stem mixture (AGLS), and root (AGR) from Angelica gigas Nakai were examined by using water, hot water and ethanol solvent. The highest extract yield (21.89%) was found in the water extract of AGR. The highest concentrations of phenolic compounds and flavonoids in the ethanol extracts of AGLS and AGR were 14.99% and 14.79%. Major minerals of AGLS and AGR were K, Mg, Fe, Na and Ca. Decursin and decursinol angelate were the major ingredients of Angelica gigas, detected at 18.71 and 18.89 min of retention time by HPLC analysis, respectively. The highest concentrations of decursin and decursinol angelate in the Angelica gigas ethanol extract were found in root ($41.7\;{\mu}g/g$) and leaf ($34.04\;{\mu}g/g$). The highest free radical scavenging activity was found in the hot water extracts of AGLS and AGR, and its activity was stronger in all extracts of AGLS than AGR. The highest reducing power was found in the ethanol extracts of AGLS and AGR and this was dependent on the sample concentration. The hot water extracts of AGLS and AGR revealed the highest inhibition activity on tyrosinase. Overall, these results may provide the basic data needed to understand the biological activities of bioactive materials derived from Angelica gigas.

Efficacy and Safety Evaluation of an Air Sterilizer Equipped With an Electrolytic Salt Catalyst for the Removal of Indoor Microbial Pollutants (염촉매 전기분해 공기살균기의 효능 평가)

  • Sun Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Kyung Il Jung;Gye Rok Jeon;Soon Cheol Ahn
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.500-508
    • /
    • 2024
  • Recently, there has been increasing interest in enhancing the indoor air quality, particularly in response to the growing utilization of public facilities. The focus of this study was on assessing the efficacy and safety of an air sterilizer equipped with electrolytic salt catalysts. To that end, we evaluated the antimicrobial activity of the vapor spraying from the air sterilizer and its cytotoxicity in condensed form on human cell lines (HaCaT, BEAS-2B, and THP-1). Against the test organisms, which comprised five bacterial strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium) and one fungal strain (Candida albicans), the air sterilizer exhibited relatively high antimicrobial activities ranging from 10.89 to 73.98% following 1 and 3 hr of vapor spraying, which were notably time-dependent. Importantly, cytotoxicity assessments on human cells indicated no significant harmful effect even at a 1.0% concentration. Comprehensive safety evaluations included morphological observations, gene expression (Bcl-2, Bax) tests, and FACS analysis of intracellular ROS levels. Consistent with previous cytotoxicity findings, these estimates demonstrated no significant changes, highlighting the air sterilizer's safety and antimicrobial activities. In a simulated 20-hr operation within an indoor environment, the air sterilizer not only showed an 89.4% removal of total bacteria but also a 100.0% removal of Escherichia sp. and fungi. This research outlines the potential of the developed electrolytic salt catalyst air sterilizer to effectively remove indoor microbial pollutants without compromising human safety, underscoring the solution that it offers for improving indoor air quality.