• Title/Summary/Keyword: 청색 LED

Search Result 218, Processing Time 0.024 seconds

Effects of LED Light Conditions on Growth and Analysis of Functional Components in Buckwheat Sprout (LED 광 조건에 따른 메밀 새싹의 생육 및 기능성 물질 분석)

  • Jeon, A-Young;Kim, Ki-Hyun;Kwon, Soo-Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.388-393
    • /
    • 2015
  • Buckwheat sprouts are a vegetable; a functional food should provide health benefit and enhance performance as high nutritionally important substances. Buckwheat noodles are the major buckwheat food in Japan, Korea and China. In addition, Buckwheat as preventive medicine has undergone a great advancement in the last decade. Comparison of the functional properties distribution and utilization in tatary buckwheat is required of understanding the metabolites. The study was conducted to identify the sorts of phenolic compounds and metabolites in tatary buckwheat seedling at 4, 7, and 10 days seedling under the different combinations of light-emitting diode (LED) such as blue, red, mix (red, blue, and white), dark, and natural lights in stem and leaves. After breaking the dormancy, buckwheat seeds were grown in culture room under lights for 14 hrs and the dark condition for 10 hrs, at $25^{\circ}C$ for 10 days. Length of buckwheat was gradually increased under all of the conditions. Using HPLC, rutin was highest at 7 days under mix and natural light in stem and leaf, respectively. Quercetin was highest at 4 and 7 days under natural light in both. Chlorogenic acid was highest at 7 days under mix and natural in stem and leaf, respectively. Taken Together, this study indicates that phenolic compounds and metabolites present in those plants could be helpful for the human health and nutritional additive.

Growth and Contents of Anthocyanins and Ascorbic Acid in Lettuce as Affected by Supplemental UV-A LED Irradiation with Different Light Quality and Photoperiod (상이한 광질 및 광주기 하에서 UV-A LED 부가 조사가 상추의 생장, 안토시아닌 및 아스코르빈산 함량에 미치는 영향)

  • Kim, Yong Hyeon;Lee, Jae Su
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.596-606
    • /
    • 2016
  • The growth and contents of anthocyanins and ascorbic acid in lettuce(Lactuca sativa L., 'Jeokchima') as affected by supplemental UV-A LED irradiation under different light quality and photoperiod conditions were analyzed in this study. Five light qualities, namely B (blue LED), R (red LED), BUV (blue LED+UV-A LED), RUV (red LED+UV-A LED) and Control (white fluorescent lamps) with photoperiods of 12/12 hours (day/night), 16/8 hours, or 20/4 hours were provided to investigate the effects of light quality and photoperiod on the growth and accumulation of anthocyanins and ascorbic acid in lettuce leaves. As measured 28 days after transplanting, the number of leaves, leaf length, leaf width, leaf area, shoot fresh weight and dry weight of lettuce were significantly affected by light quality and photoperiod. The number of leaves, leaf length, leaf width, leaf area, shoot fresh weight and dry weight of lettuce grown under R treatment increased with increasing light period. By contrast, leaf development was inhibited, but chlorophyll content increased, under B treatment. Supplemental UV-A irradiation significantly decreased leaf length, leaf width, leaf area and shoot fresh weight. Anthocyanins in lettuce increased significantly with decreasing dark period under B treatment. A synergistic effect of supplemental UV-A LED irradiation on anthocyanins accumulation was found for lettuce leaves grown under R treatment but not B treatment. Ascorbic acid in lettuce was greatly affected by photoperiod. Ascorbic acid content at BUV and RUV treatments increased by 20-30% compared to without UV-A LED irradiation. From these results, it was concluded that growth and contents of anthocyanins and ascorbic acid in lettuce are significantly affected by supplemental UV-A LED irradiation. The results obtained in this study will be informative for efforts to improve the nutritional value of leafy vegetables grown in plant factories.

Graft-taking and Growth Characteristics of Grafted Cucumber(Cucumis sativus L.) Seedlings as Affected by Light Quality and Blink Cycle of LED Modules (LED 모듈의 광질 및 점멸주기에 따른 오이접목묘의 활착 및 생장 특성)

  • Kim, Hyeong Gon;Choi, Yu Hwa;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2019
  • This study was conducted to investigate the graft-taking and growth of grafted cucumber seedlings as affected by light quality and blink cycle of LED modules. Four light quality treatments, namely blue, red, blue+red, white LED and four blink cycle levels of 5s/5s, 7s/3s, 9s/1s and control were provided to investigate the effect of lighting quality and blink cycle on the graft-taking and growth of grafted cucumber seedlings. Photoperiod for the control was 12/12 h. Photosynthetic photon flux, air temperature, and relative humidity for healing were maintained at $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $25^{\circ}C$, and 90%, respectively. There was no significant difference in graft-taking of grafted cucumber seedlings according to light quality except the blue LED with the blink cycle of 5s/5s. Regardless of the blink cycle, there was no significant difference in graft-taking of cucumber seedlings healed under red, blue+red, and white LED modules. These results implied that the effects of light quality and blink cycle on the graft-taking were not significant. Differences in the leaf length, leaf area, and fresh weight of cucumber seedlings healed blue or red LED with the blink cycle of 9s/1s were found to be significant. There was no significant effect of the blink cycle on the growth of cucumber seedlings healed under white LED modules. The prices of white LED are gradually falling due to increased demand. Considering the manufacturing unit price of white LED modules, the cost savings of 10-15% are expected as compared to the conventional blue/red LED modules. Therefore, it was concluded that the use of white LED modules will be economical as an artificial lighting sources for healing of grafted seedlings.

A Study on The Photosynthesis Accelerate by Light Color Composition in Plant Factory (식물공장 광원의 색조합에 따른 광합성활성화에 관한 연구)

  • Hong, Ji-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.368-375
    • /
    • 2016
  • This study examined the criteria for efficient LEDs used throughout the experiment of an LED with another light color growth to be used in a plant factory. The experiment was confirmed by measuring the Red-LED, Blue-LED, plant growth, and amount of carbon reduction in a White-LED environment. The white-LED showed a similar growth trend to the Red-LED. Blue-LED showed the lowest growth. Measurements of the carbon dioxide levels, showed that the Red-LED and blue LED produced the lowest levels. The combination of the ratio of the LED showed four Red-LEDs and one blue LED to be the higher of the two. In addition, three Red-LED and one Blue-LED produced equal growth to that of the white-LED. In addition, as much as possible, red is the light color that obtains the result suitable for plant factories.

Effect of LEDs on shoot multiplication and rooting of rare plant Abeliophyllum distichum Nakai (희귀 수종 미선나무(Abeliophyllum distichum Nakai.)의 기내 증식 및 발근에 미치는 LED (light emitting diode) 효과)

  • Lee, Na Nyum;Choi, Yong Eui;Moon, Heung Kyu
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.94-99
    • /
    • 2014
  • This study was conducted to elucidate the effect of light sources and explant types on in vitro shoot multiplication and rooting of a rare and endangered plant Abeliophyllum distichum. Both apical buds and axillary buds were used as explants under 4 different light sources, cool white florescent light (F), 100% blue light-emitting diode (LED) (B), 50% blue and 50% red LED mixture (BR), and 100% red LED (R). Clear difference was observed in terms of shoot proliferation by light sources types but not by position-dependent explant types. Multiple shoot induction rates were enhanced under both B and BR light sources. Spontaneous rooting was induced in shoot induction medium under B light source. Both the rates of rooting and numbers of roots per explant were higher in apical bud explants compared to axillary bud explants. Interestingly R light source stimulated shoot elongation but inhibited root development. Therefore, our results suggest that the use of apical bud explants under B or BR light sources is suitable for in vitro micropropagation of a rare and endangered plant species, Abeliophyllum distichum.

Effects of Supplemental LED Lighting on Productivity and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) Grown on the Bottom Bed of the Two-Bed Bench System (2단 베드 시스템의 하단부에서 자란 딸기의 생산성 및 과일 품질에 미치는 보광 LED의 효과)

  • Choi, Hyo Gil;Jeong, Ho Jeong;Choi, Gyeong Lee;Choi, Su Hyun;Chae, Soo Cheon;Ann, Seoung Won;Kang, Hee Kyoung;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.199-205
    • /
    • 2018
  • The aim of this study was to confirm that effects of supplemental LED illumination on a strawberry yield and fruit quality when strawberry grown on a bottom bed to be deficient ambient light due to shading of a upper bed during cultivation by a two-bed bench system. A strawberry was cultivated as a drip irrigation system in the two-bed bench system filled with a strawberry exclusive media from October 2015 to January 2016. The upper and the bottom bed without LED illumination for growth of a strawberry were using as a control. For LED light treatments, from 10 am to 4 pm, we illuminated LEDs as $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light intensity by using blue, red, and mixing LED (blue plus red) on the strawberry plants of the bottom bed. In the yield of strawberry fruit, the strawberry grown on the bottom bed treated with the blue LED significantly increased compared with that of the bottom bed part control, and increased to by near 90% of the strawberry output of the upper bed part control. The soluble sugar content of strawberry fruit grown on the upper bed part control and on the bottom bed illuminated with blue or mixed LED was higher than that of red LED and the control of the bottom bed. The content of anthocyanin was the highest increased in the strawberry grown on the upper bed part control that received a lot of ambient light, however when comparing only the bottom bed, strawberry fruits grown on all LED treatments were higher than that of the control. Therefore, we considered that using of the blue LED light on the bottom bed of two-bed bench system during strawberry cultivation is advantageous for the increase of yield and improvement of fruit quality.

The Effect of Blue and Red LEDs Irradiation on The Growth Characteristics and Ginsenoside Content of Panax ginseng C. A. Meyer (청색과 적색의 혼합LED광 처리가 인삼의 생육 및 진세노사이드 함량에 미치는 영향)

  • Seong, Bong-Jae;Kim, Hyun-Ho;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.70-74
    • /
    • 2015
  • An LED plant factory farm is an alternative way to grow crops regardless of weather, season, and blight in such times of climate change. In recent years, it is a currently active and vibrant research field. The industry, which ranges from leaf vegetables to high value products, is expanding. This study was conducted to test tthe response of LED (Light-emitting diode) irradiation on the growth characteristics and ginsenoside levels indoors, in order to find out suitable light conditions. Ginseng seedling was transplanted from a styrofoam pot ($L{\times}W{\times}D$:$495{\times}315{\times}215mm$, inside diameter) into a closed plant production system in four blue LED (BL) and red LED (RL) different ratios of 1:1, 1;2, 1:3, 1:4 in a temperature range of $20{\sim}25^{\circ}C$, relative humidity of between 55 and 65%, and a 12-hour photoperiod. The LED irradiation shows the highest levels were found at 1:1 of BL and RL ratio at $61.21{\mu}mol\;s^{-l}m^{-2}$, 1:2 ratio $68.55{\mu}mol\;s^{-l}m^{-2}$, 1:3 ratio $63.85{\mu}mol\;s^{-l}m^{-2}$ and 1:4 ratio $62.41{\mu}mol\;s^{-l}m^{-2}$ from highest to lowest respectively. After analyzing from shoot and root 2 yers old ginseng plant which were cultivated under 1:3 irradiation of BL and RL ratio, it generally showed a positive effect under a 1:3 ratio of BL and RL.

Effects of Selective Light Sources on Seedling Quality of Tomato and Cucumber in Closed Nursery System (폐쇄형 육묘시설 내에서 몇 가지 광원이 토마토와 오이의 묘소질에 미치는 영향)

  • Um, Yeong-Cheol;Jang, Yoon-Ah;Lee, Jun-Gu;Kim, Seung-Yu;Cheong, Seung-Ryong;Oh, Sang-Seok;Cha, Seon-Hwa;Hong, Seong-Chang
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.370-376
    • /
    • 2009
  • To produce uniform seedlings of tomato and cucumber with inexpensive way, their seedling quality by different light sources was investigated. The raising of seedling was performed by red LED (light emitting diodes), blue LED, red-blue mixed LED or fluorescent light with a fixed PPF(photosynthetic proton flux) level, about $40{\sim}60{\mu}mol{\cdot}m^{-2}{\cdot}sec^{-1}$. In the both tomato and cucumber, the rapid extension of hypocotyledonary axis was observed in Blue LED than fluorescent light, but opposite result was found in Red and mixed LED. During the nursery period of tomato and cucumber, the fresh weight was the highest in Red LED as 74% increasement in tomato and 74% in cucumber. In the case of seedling quality after the tomato nursery, there was no difference in the positions of 1st flower cluster and the number of bearing-flower per flower cluster by each light source. In case of cucumber, until 20th node, the setting ratio of female flower was higher in LED than fluorescent treatment, and also more healthy fruit setting was found in LED. Therefore, we assume that the Red or mixed (Red 2 + Blue 1) LED is more favorable to produce high quality tomato and cucumber seedlings in closed nursery facility.