• Title/Summary/Keyword: 철 환원

Search Result 512, Processing Time 0.035 seconds

Effect of Metal Oxide Additives on Hydrogen Production in the Steam-Iron Process (철-수증기 반응에 의한 수소생성에 미치는 금속산화물의 첨가효과)

  • Lee, Dae-Haeng;Moon, Hee;Park, Heung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1991
  • The production of hydrogen from steam by reduced iron with additives such as CuO, $In_2O_3$, $MoO_3$ and $WO_3$ has been kinetically investigated. It was shown that all additives have a promoting effect on reaction activity in the order of $$MoO_3{\gg}In_2O_3{\sim_=}WO_3{\sim_=}CuO$$. The shrinking core model was applied to predict the complete conversion time and the results were quite comparable with experimental values. The reaction was carried out in a fixed flow reactor packed with reduced iron with 1 wt % of additives under the conditions, $600-750^{\circ}C$, Ar flow rate of 1 L/min and steam partial pressure of 0.085 atm. The apparent activation energies were 14.2, 20.9, 21.3, 22.4 and 27.9 kJ/mol with $MoO_3$, $In_2O_3$, $WO_3$, CuO and without additive, respectively.

  • PDF

A study on the recovery of chromium from metal-plating wastewater with spent catalyst (폐산화철촉매에 의한 도금폐수중 크롬이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • A large tons of spent iron oxide catalyst come from the Styrene Monomer(SM) production company. It is caused to pollute the land and underground water due to the high alkali contents in the catalyst by burying them in the landfill. In order to recycle the spent catalyst, a basic study on the recovery of chromium ion from metal plating wastewater with the spent catalyst was carried out. The iron oxide catalyst adsorbed physically $Cr^{+6}$ in the lower pH 3.0, that is the isoelectric point of the spent catalyst. It was found that the iron oxide catalyst reduced the $Cr^{+6}$ into Cr+3 by the oxidation of ferrous ion into ferric ion on the surface of catalyst, and precipitated as $Cr(OH)_3$ in the higher than pH 3.0. The $Cr^{+6}$ was recovered 2.0∼2.3g/L catalyst in the range of pH 0.5∼2.0, but it was recovered 1.5 g/L catalyst at pH 3.0 of wastewater. The recovery of Cr was increased as the higher concentration in the continuous process, but the flowrates were nearly affected on the Cr recovery.

백금 기반 2종 나노입자에 대한 원자단위 시뮬레이션

  • Nam, Ho-Seok;Yun, Ga-Yeong;Kim, Gi-Beom;Jo, A-Yeong;Lee, Seung-Cheol;O, Jeong-Su;Choe, Jeong-Hye
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.9.1-9.1
    • /
    • 2011
  • 나노입자는 벌크에 비해 월등히 큰 비표면적(surface-to-volume ratio)과 작은 사이즈에서 오는 양자효과로 인해 촉매나 나노 전자 소자 등 여러 분야에서 응용되고 있다. 특히 백금 나노입자는 수소나 메탄올의 산화, 산소환원 반응의 독보적인 촉매로서 연료전지의 산화극과 환원극의 촉매로 널리 활용되고 있다. 본 연구에서는 높은 가격의 백금의 사용량을 줄일 수 있는 합금 나노입자 촉매에 대한 연구의 일환으로 Pd, Au, Cu, Ag 등의 원소를 활용한 합금 나노입자에 대한 구조 및 열역학적 안정성에 대한 연구를 수행하였다. 다양한 합금에 대한 원자간 포텐셜을 개발하였고, 이를 기반으로 몬테카를로 및 분자동력학 시뮬레이션을 수행하여 Pd-Pt, Cu-Pt, Ag-Pt, Au-Pt 이원계 합금 나노입자의 다양한 원자 구조 및 형상에 따른 결합에너지와 열역학적 특성에 대하여 분석하였다.

  • PDF

Antioxidation Effect of Various Electrolyzed Water (여러 가지 전리수의 항산화 효과)

  • Lee Yoon Bae;Ryoo Kunkul;Lee Jongkwon;Lee Miyoung;Shin Eunjung;Sung Sichang;Ku Daechul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.318-320
    • /
    • 2005
  • Antioxidation effect of reduced electrolyzed water, which has been known as antiaging agent has been investigated with very simple method. Antioxidation effect of the reaction of linoleic acid with oxygen has been measured and analyzed. Alkaline reduced electrolyzed waters are better effect, rather acidic oxidized electrolyzed waters accelerates oxidation reaction.

  • PDF

Hydrogen Induced Reduction of Fe- and Co-Oxides with Addition of Ni and Pd (철과 코발트 산화물의 수소 환원에 니켈 및 팔라듐 첨가의 효과)

  • Kim, Jong-Pal
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2011
  • Temperature programmed reduction experiments for Fe- and Co-oxides were performed and weight losses were carefully measured to calculate the extent of reduction. Addition of nickel and palladium affected the reduction by lowering the DTG peak temperature. Reduction experiments for the oxides on alumina were also studied and the effect of nickel and palladium addition was confirmed. And that was explained by means of increased adsorption of hydrogen and increased diffusion ability of the surface hydrogen.

습열처리 변성 쌀을 이용한 식혜제조

  • Yuk, Chul;Cho, Seok-Chul
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.213.1-213
    • /
    • 2003
  • 습열처리 방식으로 물리적 변성시킨 쌀을 이용하여 식혜 당화 특성을 살펴보았다. 쌀을 습열처리 하였을 때 쌀 전분의 팽윤이 억제되었고 호화온도는 상승하였으며 호와 엔탈피는 감소하는 등쌀 전분의 특성이 변하였고 이렇게 처리한 쌀을 이용하여 식혜를 제조하였을 때 식혜 당화 속도는 크게 향상되었다. 즉 121$^{\circ}C$, 15 psi에서 시간별로 autoclaving하여 습열처리를 한 쌀을 가지고 식혜를 제조한 결과 당화시간이 경과함에 따라 일반 쌀을 이용하여 당화하였을 때에 비해 당화시간이 Brix 및 환원당을 기준하였을 때 약 1/2로 단축되었다. 일반 쌀의 경우 당화시간이 2시간이 경과되었을 때 Brix가 8.2인데 비하여 121$^{\circ}C$에서 1시간 autoclaving한 쌀을 이용하여 당화하였을 경우 당화시간이 1시간만에 Brix가 8.7로 높아짐을 보여주었고 당화 중에 생성된 환원당 역시 Brix 측정결과와 비슷한 경향을 보여 주었다. 한편 HPLC로 분석한 당화액의 당 조성은 습열처리한 쌀로 당화한 것과 일반쌀을 이용하여 제조한 당화액간에 큰 차이가 없었다.

  • PDF

Research on Remediation of Trichloroethylene using Zero Valent Iron Bipolar Packed Bed Electrodes (영가철 충진 복극전해조를 이용한 TCE 정화기법에 관한 연구)

  • Park, Yu-Ri;Shin, Ja-Won;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.85-91
    • /
    • 2012
  • Permeable Reactive Barriers (PRBs) using zero valent iron (ZVI, $Fe^0$) is a promising technology for in-situ remediation of trichloroethylene (TCE) forming dense non aqueous phase liquid (DNAPL). The objective of this study is to develop an enhanced treatment method of trichloroethylene-contaminated groundwater using ZVI packed bed with direct current (D.C.). A column experiment was performed to investigate degradation efficiency of TCE that was performed in three different combination of control (only sand), ZVI column (ZVI:sand, packing ratio 1:2(v/v)) and bipolar column (ZVI:sand=1:2(v/v) with electric current) in the test columns. As the results of this study, the degradation efficiency of TCE was improved with simultaneous application of both bipolar column compared to that used ZVI column. Because ZVI particles are isolated and individual particles act like small electrodes. In this experiment, it was indicated a basic material for application of bipolar packed bed as electro-PRBs that was effective degradation of TCE.

Up-cycling of Air-cooled Ladle Furnace Slag : Environmental Risk Assessment and Mortar Compressive Strength Assesment of Binary and Ternary Blended Cement Using Air-cooled Ladle Furnace Slag (전기로 환원슬래그 Up-cycling : 환경위해성 평가 및 환원슬래그를 혼합하여 제조한 2성분계 및 3성분계 혼합시멘트 모르타르 압축강도 평가)

  • Cho, Han Sang;Mun, Young Bum;Moon, Won Sik;Park, Dae Cheol;Kim, Hyeong Cheol;Choi, Hyun Kook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.159-164
    • /
    • 2015
  • This study investigated the environmental risk for up-cycling of air-cooled ladle furnace slag (LFS) and evaluated the mortar compressive strength of binary and ternary blended cements using LFS of 3, 5, 10 wt%. Based on the Soil Environment Conservation Act standard, there was no environmental risk of the up-cycling of LFS. Results of mortar compressive strength assesment showed that the compressive strength of two blended cements using LFS of lower than 5 wt% was about 1.1 times superior to that of un-substituted cement (ordinary portland cement, OPC); however the compressive strength of those with LFS of 10 wt% decreased with 10% compared with that of OPC.

Application of a Numerical Model for the Prediction of Vertical Profiles of Electron Acceptors Based on Degradation of Organic Matter in Benthic Sediments (퇴적 유기물 분해과정에 따른 물질 거동 변화 예측을 위한 수치모델 적용)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.151-157
    • /
    • 2005
  • A one-dimensional numerical model was developed to simulate vertical profiles of electron acceptors and their reduced species in benthic sediments. The model accounted for microbial degradation of organic matter and subsequent chemical reactions of interest using stoichiometric relationships. Depending on the dominant electron acceptors utilized by microorganisms, the benthic sediments were assumed to be vertically subdivided into six zones: (1) aerobic respiration, (2) denitrification, (3) manganese reduction, (4) iron reduction, (5) sulfate reduction, and (6) methanogenesis. The utilizations of electron acceptors in the biologically mediated oxidation of organic matter were represented by Monod-type expression. The mass balance equations formulated for the reactive transport of organic matter, electron acceptors, and their corresponding reduced species in the sediments were solved utilizing an iterative multistep numerical method. The ability of model to simulate a freshwater sediments system was tested by comparing simulation results against published data obtained from lake sediments. The simulation results reasonably agreed with field measurements for most species, except for ammonia. This result showed that the C/N ratio (106/16) in the sediments is lower than what the Redfield formula prescribes. Since accurate estimates of vertical profiles of electron acceptors and their reduced species are important to determine the mobility and bioavailability of trace metals in the sediments, the model has potential application to assess the stability of selected trace metals in the sediments.

Reactions of As(V) with Fe(II) under the Anoxic Conditions (무산소 조건에서의 Fe(II)와 As(V)의 반응에 관한 연구)

  • Jung, Woo-Sik;Lee, Sang-Hun;Chung, Hyung-Keun;Kim, Sun-Joon;Choi, Jae-Young;Jeon, Byong-Hun
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.487-494
    • /
    • 2009
  • The purpose of this study was to investigate the feasibility of As(V) reduction by aqueous Fe(II), and subsequent As(III) immobilization by the precipitation of As(III) incorporated magnetite-like material [i.e., co-precipitation of As(III) with Fe(II) and Fe(III)]. Experimental results showed that homogeneous As(V) reduction did not occur by dissolved Fe(II) at various pH values although the thermodynamic calculation was in favor of the redox reaction between As(V) and Fe(II) under the given chemical conditions. Similarly, no heterogeneous reduction of sorbed As(V) by sorbed Fe(II) was observed using synthetic iron (oxy)hydroxide (Goethite, ${\alpha}$-FeOOH) at pH 7. Experimental results for the effect of As(V) on the oxidation of Fe(II) by dissolved oxygen showed that As(V) inhibited the oxidation of Fe(II). These results indicate that As(V) could be stable in the presence of Fe(II) under the anoxic or subsurface environments.