• Title/Summary/Keyword: 철 이온

Search Result 775, Processing Time 0.024 seconds

Selective Separation and Determination of Iron with Ion-Exchange Resins (이온교환수지에 의한 철의 선택적 분리 및 정량)

  • Yong Soon Chung;Dong Won Kim;Seung Ho Kim;Dai Woon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.45-54
    • /
    • 1987
  • Dowex 1-X8 resin ion exchanged with calcon carboxylic acid (CCA-Dowex 1-X8) and 2-methyl-8-hydroxyquinoline(MHQ) impregnated-Amberlite XAD-4 resin (MHQ-XAD-4) were examined for the separation and preconcentration of ferric ion from the various matrices. The stabilities of these resins were investigated, and their capacities on ferric ion were also measured. The effect of pH on the adsorption of ferric ion and matrix ions, such as Al(Ⅲ) and Ca(Ⅱ), was investigated to determine the optimun pH ranges. Separation and preconcentration of iron in aluminium foil and mineral water samples were studied by elution method with these resin columns. The recovered ions by 10ml of 2F nitric acid was determined by flame atomic spectrophotometry. SP-Sephadex C-25 column was used to separate ferrous and ferric ion in mineral water by stepwise elution with ferrozine and 1 % ascorbic acid-ferrozine solution. The concentrated and separated each ion could be determined spectrophotometrically at the analytical wavelenth of Fe(Ⅱ)-ferrozine complex (562nm).

  • PDF

Study on the Fenton Reaction Condition for Evaluation of Chemical Durability of PEMFC Membrane (PEMFC 고분자막의 화학적 내구성 평가를 위한 Fenton 반응 조건에 관한 연구)

  • Oh, Sohyeong;Park, Jisang;Jung, Sunggi;Jeong, Jihong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.49-53
    • /
    • 2021
  • The Fenton reaction is often used to evaluate the chemical durability of polymer membranes of Proton Exchange Membrane Fuel Cells (PEMFC). However, due to the violent reaction between hydrogen peroxide and iron ions, it is difficult to compare experimental data because of low reproducibility. In this study, we tried to find the reaction conditions to improve the reproducibility of the durability test of the membrane by the Fenton reaction. The hydrogen peroxide concentration was fixed at 30%, the iron ion concentration, temperature, stirring speed, and sample size were varied, and the fluorine ion concentration of the Nafion polymer membrane deteriorated by radicals was measured. When the iron ion concentration was increased or the membrane sample size was increased, and the reaction temperature was increased to 80 ℃, the experimental deviation increased, so an iron ion concentration of 10 ppm, a temperature of 70 ℃, and a sample size of 0.5 ㎠ were suitable.

$Co{^2+}$ 이온으로 오염된 토양에 대한 EDTA 존재 하에서 pH변화에 따른 탈착반응 연구

  • 권회삼;원휘준;안병길;김계남;이병직;오원진;이계호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.808-813
    • /
    • 1998
  • EDTA 의 농도 및 온도가 일정한 조건에서 수용액의 pH 를 변화시켜 가며, 토양으로부터 Co$^2$$^{+}$ 이온의 탈착특성을 살펴보았다. 실험범위에서, pH 4 일 때 $CO_2$$^{+}$ 이온의 탈착율이 가장 양호하였으며, pH 가 상승함에 따라 탈착율이 감소되는 것으로 나타났다. 또한, 반응중 철 성분이 용해되어 나오는데 이는 반응 초기 수소이온에 의한 용해와 반응중 탈착된 Co$^2$$^{+}$ 이온에 의한 용해로 설명하였다.

  • PDF

철 이온이 도입된 수산화인회석의 합성과 물성변화에 관한 연구

  • Jeong, Byeong-Hyeon;Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.285-285
    • /
    • 2013
  • 수산화인회석(Hydroxyapatite, HAP)은 인체 내 뼈와 치아의 주성분으로서 칼슘과 인산염으로 구성된 물질이다. 암모늄을 이용하여 pH를 조절함으로서 hexagonal 형태의 HAP를 수열합성법으로 합성하였다. XRD pattern을 통하여 수산화인회석의 결정구조를 확인하였으며, 전이금속 중의 하나인 Fe(III) 이온을 이온교환반응을 통하여 수산화인회석 표면에 도입하였다. ICP 측정을 통해 Fe 함량을 정량하였고 SEM과 TEM image를 통하여 크기와 형태를 관찰하였다.

  • PDF

Effect of Surfactant on Reductive Dechlorination of Trichloroethylene by Zero-Valent Iron (양이온-비이온 혼합계면활성제의 첨가가 영가철을 이용한 TCE환원에 미치는 영향)

  • Shin, Min-Chul;Choi, Hyun-Dock;Yang, Jung-Seok;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2007
  • Trichloroethylene (TCE) is a representative dense non-aqueous phase liquid (DNAPL) and has contaminated substance environments including soil and groundwater due to leakage and careless. DNPAL, has been treated by surfactant-enhanced aquifer remediation (SEAR). After application of SEAR, groundwater contains still surfactant as well as little amount of residual TCE. Permeable reactive barrier using zero-valent iron (ZW) is a very effective technology to treat the residual TCE in groundwater. In this study, the effect of the residual surfactant on the reductive dechlorination of residual TCE was investigated using ZVI. Mixed surfactant composed of nonioinic surfactant and cationic surfactant was used as a residual surfactant because of toxicity and enhancement of dechlorination rate. Structure of surfactant affected significantly the decrhlorination rate of TCE. Mixed surfactant system with relatively short polyethylene oxide (PEO) chain in nonionic surfactant, cationic surfactant did not affect TCE dechlorination rate. However, mixed surfactant system with relatively long PEO chain in nonionic surfactant shows that TCE dechlorination rate was significantly dependent on fraction of cationic surfactant and HLB of nonionic surfactant. Cationic surfactant with trimethyl ammonium group enhanced reductive dechlorination rate compared to that surfactant with pyridinium group.

Effect of Ionic Molar Conductivity on Separation Characteristics of Heavy Metals by Nanofiltration Membranes in Waste Water (이온 몰 전도도가 나노여과막에 의한 폐수 중의 중금속 분리특성에 미치는 영향)

  • Oh, Jeong-Ik
    • Land and Housing Review
    • /
    • v.4 no.1
    • /
    • pp.119-124
    • /
    • 2013
  • Generally, the characteristic of nanofiltration membranes were catagorized into charged membrane, sieve effect, interaction between membarnes and target solutes. This study aims to investigate the effect item of heavy metal separation with view of charge nanofiltration membranes. The experiments of nanofiltration were conducted by nanofiltration set-up with operational pressure of 0.24 MPa at $25^{\circ}C$ by using synthetic wastewater containing 0.1mg/L of Cr, Fe, Cu, Zn, As, Sn, Pb. Nanofiltration membranes rejected heavy metals much better than chloride, sulfate and TOC, of which concentration in synthetic wastewater was higher than that of heavy metals. To consider rejection characteristics of various metals by nanofiltration membranes, separation coefficient, which is the molar conductivity ratio of the metal permeation rate to the chloride ion or TOC permeation rate, was introduced. In spite of different materials and different nominal salt rejection of nanofiltration membrane used, the separation coefficients of metals were nearly the same. These phenomena were observed in the relationship between the molar conductivity and the separation coefficient for heavy metals.

Simulation on the Distribution of Vanadium- and Iron-Picolinate Complexes in the Decontamination Waste Solution (제염 폐액에서 바나듐- 및 철-피콜리네이트 착화물의 평형분배 모사)

  • Shim, Joon-Bo;Oh, Won-Zin;Kim, Jong-Duk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • The distribution of vanadium and iron ionic species in the presence of picolinate ligand has been simulated at various conditions with different pH values and compositions in the decontamination waste solution. In spite of variations of metal concentration in the decontamination solution, the shape of distribution diagrams were not changed greatly at both high (the molar ratio of picolinate to vanadium is 6) and low (the molar ratio is 3) LOMI decontamination conditions. However, in the solution of low-picolinate condition the shape of the distribution diagram of iron(II)-picolinate complexes was changed significantly. This phenomenon is attributed to the shortage of relative amount of picolinate ligand to iron existed in the solution, and originated from the difference in stability constants for complexes formed between vanadium(III) and iron(II) species with picolinate ligand. The distribution diagrams obtained in this study can be applied very usefully to the prediction or understanding the reaction phenomena occurred at various conditions in the course of the LOMI waste treatments such as an ion exchange operation.

Differential Pulse Voltammetric Determination of Iron(III) Ion with a Sodium Dodecyl Sulfate Modified Glassy Carbon Electrode (시차펄스전압전류법에서 도데실황산나트륨이 수식된 유리탄소전극에 의한 선택성 있는 철(III) 이온의 정량)

  • Ko, Young Chun;Kim, Jin Ah;Chung, Keun Ho
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.427-432
    • /
    • 1997
  • A selective method for the determination of iron(III) ion with a sodium dodecyl sulfate(SDS) modified glassy carbon electrode was proposed. It was based on the electrostatic attraction and complexation of the SDS modifier, $(DS^-)_n-Fe^{3+}$. The determination of iron(III) ion was performed by a differential pulse voltammetry(DPV), and the reduction peak potential of $(DS^-)_n-Fe^{3+}$ was +0.466(${\pm}0.002$)V vs. Ag/AgCl. For the determination of iron(III) ion, a linear calibration curve was obtained within the iron(III) ion concentration range of $0.50{\times}10^{-5}{\sim}10{\times}10^{-5}mol/L$, and the detection limit was $0.14{\times}10^{-5}mol/L$. $Cu^{2+}$, $Ni^{2+}$, $Co^{2+}$, $Pb^{2+}$, $Zn^{2+}$, and $Mn^{2+}$ showed little or no effect on the determination of iron(III) ion, respectively. But, ion such as each $CN^- $ and $SCN^-$ interfered seriously.

  • PDF

Enrichment of Chromium(Ⅵ) by Macrorecticular DPC Resin (큰 그물 구조-DPC 수지에 의한 Cr(Ⅵ)의 농축)

  • In Hwa Woo;Tong Oh Seo;Kyu Ja Whang;Yong Keun Lee
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 1983
  • Using a column of macrorecticular gel beads impregnated with alcohol solution of diphenylcarbarzide (DPC), the enrichment of Cr(Ⅵ) ion in 0.1M sulfuric acid was investigated. The column performance was compared with respect to the types of solid support such as Amberlite XAD and Diaion HP. Diaion HP-20 was found to be most suitable for this purpose. The break through point was increased when increasing the amount of DPC absorbed in the resin and the concentrated sample solution showed higher break through capacity than the dilute one. The extraction of Cr(Ⅵ) was not affected by the presence of 100 ppm Fe(Ⅲ) which amounted to ten times of 10 ppm Cr(Ⅵ) and the presence of other metal ions which amounted to 100 times of 10 ppm Cr(Ⅵ). Because the used gel particles were effectively regenerated with methanol, they were able to be used repeatedly.

  • PDF