• Title/Summary/Keyword: 철원지역 현무암

Search Result 5, Processing Time 0.018 seconds

A Study on Iron Compounds of Volcanic Basalt at Hantan Riverside in Cheorwon (철원 한탄강유역 현무암의 철 화합물에 관한 연구)

  • Yoon, In Seop;Kim, Sun Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.169-173
    • /
    • 2015
  • Fe compounds of volcanic basalt samples distributed at the Hantan riverside in Cheorwon were investigated by means of X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF) and $M{\ddot{o}}ssbauer$ spectroscopy. We found that samples were typical basic rock which consisted of augite, anorthite, albite and sanidine etc. They had the total amount of iron compounds including hematite (${\alpha}-Fe_2O_3$) varies from 6.20 w% to 12.8 w% depending on the different regions by XRF. The $M{\ddot{o}}ssbauer$ spectra of the samples were consisted of three doublets. The balance state of Fe ions of all samples were chiefly $Fe^{2+}$, and $Fe^{2+}/Fe^{3+}$ ratios were 2.27~3.42.

Effect of Growing Condition on Growth and Quality in Wasabia japonica Matsum (고추냉이의 재배환경이 생육 및 품질에 미치는 영향)

  • Byeon, Hak-Soo;Lim, Soo-Jeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.196-199
    • /
    • 2005
  • This study was conducted to find out the effect of quality of water for wasabi growth by the relationship of quality of water and plant growth. In dissolved contents of water, water of lime area was higher than basalt area at $NO_3$, Cl, Ca, and Mg. In the change soil hardness and water temperature, basalt area was lower than lime one, during wasabi cultivation. Growth characteristics and yield were higher in basalt area than lime one. The weight of rhizome in basalt and lime was 585 kg/10a, 4183kg/10a, respectively.

Granite Landforms in the Vicinity of Seungil-gyo Bridge at Cheorwon, Central Korea (철원군 승일교 인근의 화강암 지형 경관)

  • LEE, Min-Boo;HAN, Joo-Yup;KIM, Chang-Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.27-37
    • /
    • 2012
  • This study investigated granite landforms formed by Hantan-gang fluvial erosion and deposition, or by weathering in the area neighboring the Seungil-gyo bridge in Cheorwon-gun Gangwon-do Korea, in which the contact zone of Myeongseongsan granite and Cheorwon lava plateau creates a unique landform. Major granite landforms are deeply weathered hill, sheet erosional landform, paleo-landform surface and paleosoil, micro-fluvial landforms such as pothole and groove, granite rampart, sand bar and boulder bar, former riverbed. And river cliffs on a weakly weathered dome act as a barrier to lateral shifting of the river.

Formative Age and Process on Basalt of Lava Plateau in the Cheolwon and Yeoncheon Areas, Central Korea (철원 및 연천 지역 용암대지 현무암의 형성 시기 및 형성 과정)

  • Lee, Min-Boo;Seong, Yeong Bae;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.4
    • /
    • pp.41-51
    • /
    • 2020
  • The Cheolwon-Pyeonggang Lava Plateau on the Chugaryeong tectonic valley is one of the most extensive volcanic areas in central Korea. However, formative age and process of the plateau still remains a controversial issue. This study presented OSL ages on the upper and lower sedimentary layers of basalt from four sites in the Cheolwon and Yeoncheon areas and estimated age and process of plateau formation based on sedimentary- and chrono-stratigraphy and topographic analysis. The results suggested that most of the initial topography of the plateau on the Cheolwon and Yeoncheon areas had been almost completed before approximately 90 ka. However, the last lava flow around Jangheung-ri, Cheolwon, seemed to occur until 20-30 ka and had led to complete the present plateau, while the last lava flow in the Jeongok area, Yeoncheon, was estimated to occur at approximately 40 ka.

Hydrogeologic and Hydrogeochemical Assessment of Water Sources in Gwanin Water Intake Plant, Pocheon (포천 관인취수장 수원에 대한 수리지질 및 수리지구화학적 평가)

  • Shin, Bok Su;Koh, Dong-Chan;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.3
    • /
    • pp.209-221
    • /
    • 2016
  • The section from water source to 2.6km upper stream of Hantan River is protected as the drinking water quality protection area according to guidelines of Ministry of Environment, because water source of the Gwanin water intake plant has been known the river. However, opinions were consistently brought up that the standard of water source protection zone must be changed with using underground water as water source because of contribution possibility of underground water as the water source of Gwanin water intake facility. In this regard, hydrogeologic investigation including resistivity survey and hydrogeochemical investigation were carried out to assess water source and infiltration of contaminant for the plant. Quaternary basaltic rocks (50m thick with four layers) covered most of the study area on the granite basement. As the result of the resistivity survey, it is revealed that permeable aquifer is distributed in the boundary of two layers: the basaltic layer with low resistivity; and the granite with high resistivity. Considering of outflow from Gwanin water intake facility, the area possessing underground water was estimated at least $5.7km^2$. The underground water recharged from Cheorwon plain was presumed to outflow along the surface of unconformity plane of basalt and granite. Based on field parameters and major dissolved constituents, groundwater and river water clearly distinguished and the spring water was similar to groundwater from the basaltic aquifer. Temporal variation of $SiO_2$, Mg, $NO_3$, and $SO_4$ concentrations indicated that spring water and nearby groundwater were originated from the basaltic aquifer and other groundwater from granitic aquifer. In conclusion, the spring of the Gwanin water intake plant was distinguished from river water in terms of hydrogeochemical characteristics and mainly contributed from the basaltic aquifer.