• Title/Summary/Keyword: 철도 비탈면

Search Result 15, Processing Time 0.031 seconds

Analysis of the Safety Factor of Railway Slopes when Rapid Hardening Composite Mat are Applied (초속경 복합매트 적용 시 철도 비탈면 안전율 분석)

  • Seongmin Jang;Jinseong Park;Taehee Kang;Hyuksang Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.21-28
    • /
    • 2023
  • In this paper, an experimental study was conducted to present the properties of rapid hardening composite mat, and a numerical analysis was carried out to analyze the slope protection effect of the mats based on ground conditions, rainfall, slope gradient and soil height. As a result, the application of rapid hardening composite mat increased the slope safety factor in all conditions, and the increase rate of safety factor showed an average of 40% increase both in dry and rainy seasons. Through these research findings, the protective effect of the rapid hardening composite mat on sloping surfaces has been proven, and it is suggested that the rapid hardening composite mat is suitable for application in areas where slope failure or collapse is expected.

Reinforcement Effect of Rapid Hardening Composite Mat for Protect Railway Slope in Operation (운영중인 철도비탈면 보호를 위한 초속경 복합매트 보강 효과)

  • Kang, Tae-Hee;Jung, Hyuk-Sang;Kim, Jin-Hwan;Back, In-Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.151-163
    • /
    • 2021
  • This paper is dealt with railway slope stability for slope reinforcement using a geosynthetic concrete composite mat(GCCM). Recently, according to a change in weather caused by global warming, train operation has been restricted by the loss of backfill slope at the roadbed, which is consists of gravel, due to typhoons and heavy rainfall. In addition, the amount of damage is getting more significant than the cost of restoration, and the safety of workers is worried. In order to improve this limitation, a slope stability analysis was applied with a rapid hardening composite mat so that it can quickly secure a construction surface with increased workability and work stability and reduce maintenance costs by preventing re-loss in case of heavy rain and fundamentally blocking vegetation. As a result of the analysis, it was confirmed that the increase in safety factor was confirmed when the rapid harding composite mat was applied.

Design Standard and Improvement Proposal of Slope (국내외 비탈면 설계기준 및 개선방안(설계안전율 중심으로))

  • Yu, Byeong-Ok;Song, Pyeong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.296-296
    • /
    • 2008
  • 국내 절토비탈면은 이상 기후 및 건설공사의 증대로 인해 증가하고 있는 추세이며 장마철 및 태풍으로 인해 비탈면의 붕괴로 많은 인명 및 재산피해가 발생되고 있는 실정이다. 국내에서 사용되고 있는 기존의 비탈면의 설계기준은 암반의 불연속면에 대한 조사를 실시하고는 있지만 주로 암반의 굴착난이도를 토층, 리핑암, 발파암으로 구분하여 각각의 비탈면 절취경사를 결정하여 사용하는 방법을 사용하였으며 이러한 기준은 단순히 암석의 강도를 기준으로 설정되어 있으므로 암석의 공학적 특성 즉, 암반내 불연속면 방향성, 연속성, 충진물질, 마찰각, 풍화속도 등의 영향으로 공용후 비탈면 구배의 재조정 및 보강이 빈번하다. 국내외 절토비탈면의 설계기준은 각 기관별로 산재되어 있었으며 비탈면에 대한 설계 및 시공 등에 관한 기준은 도로와 철도 설계기준에 일부 반영되어 있을 뿐 항만, 댐, 택지조성 등 기타 시설 설계기준에는 비탈면에 대한 기준이 마련되어 있지 않아 표준적인 비탈면 설계기준 및 유지관리지침이 등이 필요하였다. 이러한 문제점을 보완하기 위해 2004년부터 2006까지 한국시설안전공단, 한국도로공사, 대한주택공사가 협동으로 연구한 건설공사 비탈면 설계 시공 및 유지관리에 관한 연구의 결과로 2006년도에 "건설공사 비탈면 설계기준"이 수립되었다. 이 설계기준은 건설공사에서의 기존 상이한 기준들을 정리하고 동일화하는 작업을 수행하였으며 지반의 조사에서부터 대책공까지를 막나하여 정리하였다. 그러나 최근에 급격한 기후변화로 인한 비탈면붕괴 빈번함에 따라 과거 적용되어 왔던 이들 기준을 적용하는 경우, 특히 상부 토층 및 풍화암 구간에서 많은 설계안전율을 만족하지 못해 많은 보강을 수반해야 하는 문제가 발생되고 있어 그 원인에 대한 분석을 수행하고자 하였다. 2006년도 정리된 기준은 과거에 적용하여 온 유기시의 안전율 조건을 Fs > 1.1~1.2을 적용하였던 것을 Fs > 1.2로 통일하였으며 지하수위 조건은 지표면에 위치하도록 하였다. 지하수위 조건은 풍화암 및 토층의 경우, 과거 지표면에 -3m를 적용한 시기가 있었으나 지표면에 지하수위를 적용하는 것이 일반적인 해석방법이다. 이러한 결과의 원인을 검토해 보면 다음과 같다. 첫째, 풍화암 및 토층에 적용되어 온 지반강도 정수가 과거 적용한 값보다 최근에는 작아지는 경향을 보이고 있다. 둘째, 지하수위 적용문제로 현재 지표면에 지하수위를 두어 안전율을 감소시키는 문제로 이는 최근 들어 많은 연구기관에서 강우시 간극수압의 증가에 대한 연구가 활발하게 진행되고 있다. 그러나 침투수 해석은 현행 기준에도 강우의 침투를 고려한 해석을 실시하는 경우 FS > 1.3 적용하는 것으로 되어 있으나 대부분의 해석에서는 적용이 되지 못하고 있는 실정이다. 셋째, 안전율이 과거에 주로 적용된 Fs > 1.1에서 Fs > 1.2로 상향 조정되어 우기시의 설계안전율 만족시키지 못하는 문제이다. 그러므로 이러한 문제점을 개선하기 위한 검토가 필요하며 장기적으로 이에 대한 합리적인 기준을 개정하는 작업이 추후에 수행되어야 할 것으로 판단된다.

  • PDF

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.

A Study on the Improvement of 3D Slope Modeling for BIM Designing Site Construction (택지조성공사 BIM을 위한 비탈면 3차원 모델링 효율화 방안에 관한 연구)

  • Kwon, Yongkyu;Ha, Dahyun;Kim, Jeonghwan;Seo, Joonwon;Shim, Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.4
    • /
    • pp.29-40
    • /
    • 2021
  • Recently, interest in Building Information Modeling (BIM) has increased globally, and 3D modeling is a start for the application of BIM at construction sites. However, while many studies have been conducted on the efficiency of 3D modeling focused on civil facilities, there is a lack of research on the earthwork BIM. In particular, since 3D slope often has complex shapes depending on the ground models, the efficiency method for 3D slope are needed. This study analyzed the interfaces and procedures of other software to find out what functions users need. Then the functions to enter intervals between 3D faces, select multiple ground models, and improve the interface are reflected on the developed system and is able to efficiently perform modeling with only five steps, and reduce the number of clicks and inputs. As a result of conducting the test to verify the efficiency, using the developed system made skilled users complete modeling at least 1.8 times faster and unskilled people at least 2.4 times faster than using other software. This is expected to perform 3D slope modeling more efficiently, as well as to contribute to the activation of future BIM adoption for housing construction projects.

Strength and Durability Test of Rapid Hardening Composite Mat for Protect Railway Slope in Operation (운영중인 철도비탈면 보호를 위한 초속경 복합매트의 강도 및 내구성 실험)

  • Hyun-Sang, Yoo;Tae-Hee, Kang;Hyuk-Sang, Jung;In-Chul, Back
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.79-91
    • /
    • 2022
  • Recently, the frequency of damage to slopes for highways, railways, and complexes has been increasing according to abnormal climates such as heavy rainfall or snowfall. Rapid Hardening Composite Mat (RHCM) could be a satisfactory alternative because it has the advantages that large-scale earthwork is not essential and the period for restoration is minimized. Also, this method does not require heavy machines and a phase of maintenance for slopes against the shotcrete method or planted slope protection, which are representative slope protection methods. Furthermore, the curing time is shorter than Geosynthetic Concrete Composite Mat (GCCM). Therefore, RHCM could be useful for emergency restoration work. Thus, in this study, the strength and duration of RHCM are estimated, compared, and analyzed with GCCM. As a result of the laboratory test, the strength of RHCM is greater 51%, and the duration is larger 69% than GCCM.

The Study for Utilizing Data of Cut-Slope Management System by Using Logistic Regression (로지스틱 회귀분석을 이용한 도로비탈면관리시스템 데이터 활용 검토 연구)

  • Woo, Yonghoon;Kim, Seung-Hyun;Yang, Inchul;Lee, Se-Hyeok
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.649-661
    • /
    • 2020
  • Cut-slope management system (CSMS) has been investigated all slopes on the road of the whole country to evaluate risk rating of each slope. Based on this evaluation, the decision-making for maintenance can be conducted, and this procedure will be helpful to establish a consistent and efficient policy of safe road. CSMS has updated the database of all slopes annually, and this database is constructed based on a basic and detailed investigation. In the database, there are two type of data: first one is an objective data such as slopes' location, height, width, length, and information about underground and bedrock, etc; second one is subjective data, which is decided by experts based on those objective data, e.g., degree of emergency and risk, maintenance solution, etc. The purpose of this study is identifying an data application plan to utilize those CSMS data. For this purpose, logistic regression, which is a basic machine-learning method to construct a prediction model, is performed to predict a judging-type variable (i.e., subjective data) based on objective data. The constructed logistic model shows the accurate prediction, and this model can be used to judge a priority of slopes for detailed investigation. Also, it is anticipated that the prediction model can filter unusual data by comparing with a prediction value.

The Study for Improvement of Data-Quality of Cut-Slope Management System Using Machine Learning (기계학습을 활용한 도로비탈면관리시스템 데이터 품질강화에 관한 연구)

  • Lee, Se-Hyeok;Kim, Seung-Hyun;Woo, Yonghoon;Moon, Jae-Pil;Yang, Inchul
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.31-42
    • /
    • 2021
  • Database of Cut-slope management system (CSMS) has been constructed based on investigations of all slopes on the roads of the whole country. The investigation data is documented by human, so it is inevitable to avoid human-error such as missing-data and incorrect entering data into computer. The goal of this paper is constructing a prediction model based on several machine-learning algorithms to solve those imperfection problems of the CSMS data. First of all, the character-type data in CSMS data must be transformed to numeric data. After then, two algorithms, i.g., multinomial logistic regression and deep-neural-network (DNN), are performed, and those prediction models from two algorithms are compared. Finally, it is identified that the accuracy of DNN-model is better than logistic model, and the DNN-model will be utilized to improve data-quality.

A Study on the Causes of Steep Slope Failure induced Heavy Rainfall (집중호우시 급경사지 붕괴발생 원인분석 연구)

  • Ryu, Ji Hyeob;Lim, Ik Hyen;Hwang, Eui Jin
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.1
    • /
    • pp.67-74
    • /
    • 2011
  • This paper was to examine the causes of steep slope failure during the season of heavy rainfall. For the purpose, the paper carefully analyzed the sites of steep slope failure, which happened in July 2009. The direct cause of steep slope failure was much related to heavy rainfall during summer. The paper continued to verify that additional causes include the malfunction of diverse waterways, the slope design without considering weathering soils and related characteristics, the lack of the waterway size, the intrusion of plant roots, the reinforced technique without considering slope conditions, etc.

  • PDF