• Title/Summary/Keyword: 철도터널 화재

Search Result 73, Processing Time 0.027 seconds

Effects of evacuation delay time and fire growth curve on quantitative risk for railway tunnel fire (철도터널 화재 시 피난개시시간지연 및 화재성장곡선이 정량적 위험도에 미치는 영향)

  • Ryu, Ji-Oh;Kim, Hyo-Gyu;Lee, Hoo-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.809-822
    • /
    • 2018
  • A quantitative risk assessment has been introduced to quantitatively evaluate fire risk as a means of performance based fire protection design in the design of railway tunnel disaster prevention facilities. However, there are insufficient studies to examine the effect of various risk factors on the risk. Therefore, in this study, the risk assessment was conducted on the model tunnel in order to examine the effects of the evacuation start time delay and the fire growth curve on the quantitative risk assessment. As a result of the analysis of the scenario, the fatalities occurred mainly when escapes in the same direction as the direction of the fire smoke movement. In addition, after the FED exceeded 0.3, the maximum fatalities occurred within 10 minutes. In the range of relatively low risk, distance between cross passages, evacuation delay time and fire growth curve were found to affect the risk, but they were found to have little effect on the condition that the risk reached the limit. Especially, in this study, it was evaluated that the evacuation delay time reduction, fire intensity and duration reduction effect were not observed when the distance between cross passages was more than 1500 m.

A study on the deterministic temperature-time curves and required resistance times by fire model for assessment of fire resistance of tunnel structures (터널의 내화성능 평가용 화재온도곡선과 화재모델별 내화시간에 대한 고찰)

  • Kim, Hyo-Gyu;Park, Kyung-Whan;Yoon, Myong-O;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.165-176
    • /
    • 2005
  • A variety of research projects have been undertaken due to the recent catastrophic tunnel fires throughout the world, Among them, more emphasis was given to full scale and scale model fire experiments, and recently the area of fire resistance of tunnel structures attract more interests, On the contrary to the cases in most of the advanced countries where design standards as well as recommendations have already been announced, no local criteria for design can be found, This paper aims at deriving the fire characteristics appropriate for the assessment criteria of fire resistance of structures in local tunnels through studying the existing fire temperature curves including ISO 834 standard temperature curve, HC curve, RWS curve, ZTV curve and EBA curve.

  • PDF

Numerical study for smoke behavior in case of train fires in railway tunnel with axial fan vents (강제환기 통풍구가 설치된 철도터널 열차화재에서 연기거동에 관한 수치해석적 연구)

  • Kim, Dong-Hyeon;Shin, Min-Ho;Moon, Jung-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1998-2004
    • /
    • 2003
  • Numerical study were performed to analyze for fire safety in railway tunnel with forced ventilation vents. For the condition of train fires with heat release rate of 30 MW, unsteady three dimensional analysis were carried out to investigate the effects of smoke movements, the heat transfer and $CO_2$ concentrations and in double track tunnel with two vents. Among three operation modes of forced ventilations at two vents, the exhaust-exhaust mode of the vent represents the best performance for the evacuation of passengers to avoid the fire.

  • PDF

Review on the detailed standards for Quantitative Risk Analysis in High Speed Railway Tunnels (고속철도 터널의 정량적 위험도 분석(QRA)을 위한 세부기준에 관한 고찰)

  • Choi, Won-Il;Choi, Jeong-Hwan;Moon, Yeon-Oh;Kim, Seon-Hong;Yoo, Ho-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.393-407
    • /
    • 2008
  • To protection of fire accident and to minimize danger of spreading the disaster. in railway tunnel, MCT (the Ministry of Construction and Transportation) published "Rules about the Safety Standard of Railroad (2005.10.27)" and "The Detailed Safety Standard of Railroad (2006.9.22)". QRA(Quantitative Risk Analysis) results are applied to establish the fire protection facilities in railway tunnel so that institute the reasonable application about the fire safety facilities However, it is difficult to perform the fire safety design due to lack of the detailed standards about event scenario, fire intensity, incidence rate of accidents etc. Therefore, This paper introduces the practical method about detailed standards of QRA.

A study on evacuation characteristic by cross-sectional areas and smoke control velocity at railway tunnel fire (철도터널 화재시 단면적별 제연풍속에 따른 대피특성 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Kim, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.215-226
    • /
    • 2015
  • In this study, with variables the cross section area ($97m^2$, $58m^2$, $38m^2$) and the wind velocity(0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 m/s), the time of getting off train dependent on the way of itself and the width of the evacuation route was analyzed, and also fire and evacuation characteristics is reviewed by cross section area of each wind velocity. As the result, if cross section become smaller, the density of harmful gases in the tunnel increased more than the ratio of decreasing cross section area. In the case of small cross sectional area, the surrounding environment from initial fire is indicated to exceed the limit criteria suggested in performance based design. In the analysis of effective evacuation time for evacuation characteristics, the effective evacuation time was the shortest in the case of evaluating effective evacuation time by the visibility. Also, there was significant difference between the effective evacuation time on the basis of performance based evaluation and the effective evacuation time obtained by analyzing FED (Fractional effective dose), one of the analysis method obtaining the point that deaths occur, against harmful gases.

A Study on Analysis of Passenger Safety in Railroad Tunnel Fire - Using Simulation - (시뮬레이션을 이용한 철도터널 화재 사고의 승객 안전도 분석)

  • Kim, Dong-Jin;Moon, Seong-Am;Kim, Dong-Gun;Kim, Kyung-Sup;Jang, Young-Joon;Jung, Woo-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.131-136
    • /
    • 2007
  • In this paper, the methodology to predict the number of deaths and possible fire propagation scenarios will be described in case of fire on a train in a tunnel. We use a probabilistic analysis method for the evaluation of possibility for each scenario and the deaths tolls are calculated with the help of the passenger evacuation simulation program. The resulting safety of passengers is displayed on a F/N graph, which could be used in part as a guideline to predict the safety level of the tunnel in fire.

대심도 철도에서의 응급의료체계 : 국내 유사한 교통체계에서 상황을 중심으로

  • Wang, Sun-Ju
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.36-42
    • /
    • 2010
  • 최근 포화된 도시 인구와 교통량에 대응하기 위하여 기존의 버스, 지하철 등의 대중교통 수단 이외에 광역화된 도시 영역을 빠른 시간 내에 대량의 승객이 이동할 수 있는 신개념의 교통체계로서 대심도 철도가 소개되고 있다. 철도가 광역화되고 인구 밀도가 높은 도시 영역을 빠르게 대량의 승객을 수송하기 위해서 지하 깊이 철도가 다니게 하는 것이 경제성, 효율성 측면에서 합리적일 수 있으나 편리성과 도입에 초점을 맞추다 보니 여기서 발생할 수 있는 여러 가지 안전 문제에 대한 체계적인 검토가 간과되고 있다. 대심도 터널 내에서의 다양한 교통사고와 화재를 포함하여 각종 자연 재해와 인적 재난이 대심도 교통수단의 안전에 영향을 줄 수 있다. 방재 측면에서 대심도 터널 자체의 구조와 기능, 교통수단의 기능 측면을 강조하다 보니 인명 피해, 즉 인간 그 자체의 안전에 대하여 간과하는 측면이 있어 본 내용은 국내 유사 교통 수단인 고속철도에서 심장마비 환자의 응그브이료 구축 사례와 대구 지하철 화재의 초기 응급의료 대응을 통하여 대심도 철도 사고나 응급환자 발생 시 대피와 구조의 어려움을 적절히 대처하고, 인명피해 저감 대책과 대심도 철도의 특성에 맞는 응급의료체계를 개발 방향에 대하여 제시하고자 한다.

  • PDF

Study on the prediction of the stopping probabilities in case of train fire in tunnel by Monte Carlo simulation method (몬테카를로 시뮬레이션에 의한 화재열차의 터널 내 정차확률 예측에 관한 연구)

  • Ryu, Ji-Oh;Kim, Jong-Yoon;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • The safety of tunnels is quantified by quantitative risk assessment when planning the disaster prevention facilities of railway tunnels, and it is decided whether they are appropriate. The purpose of this study is to estimate the probability of the train stopping in the tunnels at train fire, which has a significant effect on the results of quantitative risk assessment for tunnel fires. For this purpose, a model was developed to calculate the coasting distance of the train considering the coefficient of train running resistance. The probability of stopping in case of train fire in the tunnel is predicted by the Monte Carlo simulation method with the coasting distance and the emergency braking distance as parameters of the tunnel lengths and slopes, train initial driving speeds. The kinetic equations for predicting the coasting distance were analyzed by reflecting the coefficient train running resistance of KTX II. In the case of KTX II trains, the coasting distance is reduced as the slope increases in a tunnel with an upward slope, but it is possible to continue driving without stopping in a slope downward. The probability of the train stopping in the case of train fire in tunnel decreases as the train speed increases and the slope of the tunnel decreases. If human error is not taken into account, the probability that a high-speed train traveling at a speed of 250 km/h or above will stop in a tunnel due to a fire is 0% when the slope of the tunnel is 0.5% or less, and the probability of stopping increases rapidly as the tunnel slope increases and the tunnel length increases.

The Design of Realtime Cognitive System to detect Dangerous Situations in Railway Tunnel Environment (철도터널 환경에서 위험상황 감지를 위한 실시간 인지시스템의 설계)

  • Oh, HyeonJin;You, Song-su;Lee, Seungshin;Oh, Ryumduck
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.293-296
    • /
    • 2022
  • 본 논문에서는 실제 주행하는 철도가 지나가는 터널에서 유발되는 안전사고 및 주변에 거주하는 주민들과, 서식하는 야생동물들에게 피해를 입힐 수 있는 소음과 진동을 감지하고, 철도가 터널을 운행하는 상황을 구현하여, 너털에서의 위험 요소들에 대한 상황 데이이터들을 센서를 통해 데이터 수집을 진행하고 다양한 위험 상황으로부터 실시간 감지를 통해 데이터들을 분석하고 적절한 상황 지원을 위한 실시간 인지시스템 모델을 설계하고 지원한다.

  • PDF

A Study on Fire Resistance Character of a Tunnel and an Underground Structure (터널 및 지하구조물의 내화특성에 관한 연구)

  • Yoo, Sang-Gun;Kim, Jung-Joo;Park, Min-Yong;Kim, Eun-Kyum;Lee, Jun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.194-200
    • /
    • 2010
  • Recently, a longitudinal tunnel construction has increased because of subway construction extension, geomorphological effect and the development of construction Technologies etc. When the fire occurs in a tunnel and an underground structure, the many damage of human life and the economic losses are caused. In Korea, fire resistance character study of a tunnel and an underground structure is proceeding. However, when a concrete is exposed to high temperature, study of load carrying capacity reduction and stability evaluation for spalling of a concrete is not enough. Therefore in this study, fire resistance character of a concrete evaluated according to time heating temperature curve(RABT and RWS) and a result compared on virtual fire accident in order to apply fire scenario. Also this study performed thermo-mechanical coupled analysis of a FEM-based numerical technique and estimated fire-induced damage of a tunnel and an underground structure.