• Title/Summary/Keyword: 철도궤도설계

Search Result 152, Processing Time 0.021 seconds

Analysis of Dynamic Behavior of Railway Bridge with Concrete Track (콘크리트궤도 부설 철도교량의 동적거동 분석)

  • Min, Rak-Ki;Sung, Deok-Yong;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.147-153
    • /
    • 2012
  • Precise estimation f a structure's dynamic characteristics is indispensable for ensuring stable dynamic response during life time especially for the structures which can experience resonance such as railway bridges. Especially, concrete track can change the modal properties of the railway bridge, through the contribution of stiffness as well as mass effects, generally only the mass effect is considered in dynamic analysis of the railway bridge. In this paper, static and dynamic behaviors of railway bridge with concrete track were investigated through experimental study. Also, numerical analysis was performed about considering only mass of concrete track and together with stiffness and mass of concrete track. These were compared with experiment value. Numerical analysis value considering together with stiffness and mass of concrete track was similar experiment value. Therefore, when dynamic analysis of railway bridge with concrete track is performed, the contribution of stiffness as well as mass effects for concrete track is considered.

Evaluation of the Structural Behavior Characteristics and Long Term Durability for Transition Track Systems in Railway Bridge Deck Ends (철도교량 단부 전환부 궤도시스템의 구조적 거동특성 및 장기 내구성능 분석)

  • Lee, Kwangdo;Jeong, Incheol;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.260-269
    • /
    • 2014
  • Transition tracks are an alternative for enhancing the long-term serviceability and durability of concrete track components in railway bridges. The goal of this paper is to investigate the structural behavior for transition track systems of railway bridge deck ends. In this study, the structural behavior of transition tracks such as the variations in static, dynamic, and fatigue behaviors and dynamic properties (natural frequency and damping ratio) are assessed and compared through performing loading tests and finite element analyses using actual vehicle impact loadings. As a result, it is found that the structural behavior of the transition track system is expected to satisfy the actual vehicle impact loading, and the variation in the neutral axis and dynamic characteristics are not affected by the fatigue loading. Therefore, it is inferred that the structural capacity and long-term durability of the transition track system is proven.

Development of Precast Slab Track Reinforced with GFRP and Analysis of Behavior (GFRP로 보강된 프리캐스트 슬래브 궤도 개발 및 거동분석)

  • Zi, Goang-Seup;Lee, Seung-Jung;Moon, Do-Young;Kim, Yoo-Bong;Baek, In-Hyuk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2072-2076
    • /
    • 2011
  • 철도 시스템에서 철도궤도와 레일은 주요한 신호 시스템의 일부로 사용되고 있으나 콘크리트 슬래브 궤도 내부의 철근으로 인한 신호전류 감소, 교란 등을 방지하기 위해 과도한 절연작업이 필요하다. 본 연구에서는 국내에서 기 개발된 프리캐스트 슬래브 궤도의 횡방향 철근을 GFRP 보강근으로 대체하여 절연작업의 감소를 가능하게 하였다. GFRP로 보강된 프리캐스트 슬래브 궤도의 설계과정과 정적 휨 시험과 단부의 연결철근 인발 시험을 통한 거동 분석 및 고찰 내용을 제시하였다. 휨 시험과 실스케일 인발 시험의 결과 정적 휨 강도는 정립된 설계법에 의해 적절한 강도를 가지고 있으나 기 개발된 연결철근의 위치와 형태는 온도 또는 수축으로 인해 발생할 수 있는 축력을 저항할 수 없음을 확인하였다.

  • PDF

Analysis of Allowable Settlement on Tracks of High Speed Railway (고속철도 궤도 종류에 따른 허용침하량 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom;Seol, Hoon-Il;Han, Young-Ah
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.25-34
    • /
    • 2008
  • An application of concrete track is being actively processed for the construction of Korean high speed railway. The concrete track has an advantage in decreasing the maintenance cost, whereas it has much difficulty controlling the long term settlement after settlement occurred. Therefore, the management and control of settlement are very important for the successful construction of concrete track. The purpose of this paper is to verify the allowable settlement between concrete track and ballast track, and piled raft foundation installation effects as settlement reducers for concrete track. Therefore, a series of 3D finite element analyses that take into account the allowable settlement were performed for major parameters such as soil condition, pile installation and loading type. Based on the analysis, it is shown that concrete track causes much smaller settlement than ballast track, and the effect of installation is necessary to effectively reduce the settlement of concrete track.

Evaluation on the Applicability of the Conventional Roadbed Stiffness for High Speed Concrete Track (일반철도 노반 강성조건에서의 고속철도용 콘크리트 궤도의 적용성 검토)

  • Lee, Jin Wook;Lee, Seong Hyeok;SaGong, Myung;Lyu, Tae Jin
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Based on Korean railway design standards, the thicknesses of the reinforced roadbeds of conventional and high speed railways are different, and so too, for the size distribution of the ballast particles. Accordingly, considerable cost would be required to increase operating speeds of conventional lines, in particular related to changing from a ballasted track system to a ballastless one. In this study, applicability of a roadbed which supports conventional ballasted track, for use as a ballastless track for a high speed rail line was examined. A reinforced roadbed for a conventional railway is 20cm thick, and the type of material used for a conventional reinforced roadbed is M-40 (crushed gravel for road embankments). A dynamics test was conducted to evaluate the occurrence of the permanent settlement of the track substructure. These results suggest that, without changes to the track substructure, an operational speed of 400km/h is feasible with a ballastless track. This result; however, is from laboratory experiments. Further studies, such as numerical analyses or field validation, are required.

스펙트럼 해석의 역사와 배경

  • 서사범
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.30-36
    • /
    • 2003
  • 궤도(track)는 열차가 안전하고 승차감(乘車感)이 좋게 운행되도록 충분한 강도를 가지고 더욱이 양호한 상태로 정비되어 있어야 한다. 일반적으로, 토목구조물(structure)은 하중을 받으면 변위(變位)ㆍ변형하고, 하중이 없게 되면 원래대로 되돌아간다. 즉, 각 부재는 탄성 한계 내로 응력(應力)이 들어가도록 설계된다. 그러나, 궤도는 열차의 하중과 진동을 궤도 자신의 변위 축적으로 흡수하고 있다. 결국, 처음부터 틀림이 진행되어 가는 것을 전제로 한 유일한 구조물이다. 일반적으로는 스프링 하 중량과 축중(軸重)이 큰 차량이 빠르고 대량으로 주행하게 되면 궤도 틀림이 발생하여 진행한다. 궤도 틀림 파형의 성장은 궤도 틀림이라고 하는 공간적인 파형의 시간적인 추이라고 하는 2차원적인 취급이 필요하다. (중략)

Reliability-Based Optimum Design of High-Speed Railway Steel Bridges Considering Bridge/Rail Longitudinal Analysis and Bridge/Vehicle Dynamic Effect (교량/궤도 종방향 해석 및 교량/차량 동적영향을 고려한 고속철도 강교량의 신뢰성 최적설계)

  • Lee, Jong-Soon;Ihm, Yeong-Rok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.974-982
    • /
    • 2009
  • To improve the effectiveness and economics the bridge design methodology considering the bridge/rail longitudinal analysis and bridge/vehicle dynamic effect suggested in this study. The reliability-based Life-Cycle Costs(LCC) effective optimum design is applied to a 2-main steel girder bridge, 5$\times$(1@50m) for comparison with conventional design, initial cost optimization and equivalent LCC optimization. As a result of the optimum design based on reliability, it may be stated that the design of High-Speed railway bridges considering the bridge/rail longitudinal analysis and bridge/vehicle dynamic effect are more efficient than typical existing bridges and LCC optimization without respect to bridge/rail longitudinal analysis and bridge/vehicle dynamic effect. The result of optimization design considering the interaction, design methodology suggested in this study, is higher than result of initial cost optimization design in initial cost, but that has the advantage than result of initial cost optimization design in expected LCC.

Optimum Design of High-Speed Railway Bridges Considering Bridge-Rail Longitudinal Interaction and Moving Load Effect (교량-궤도 종방향 상호작용 및 동적영향을 고려한 고속철도 교량의 최적설계)

  • Ihm, Yeong-Rok;Im, Seok-Been;Park, Kwang-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.27-34
    • /
    • 2010
  • Recently, high-speed railway systems have gained increased interest as a means of environmental friendly transportation, and numerous bridges for high-speed railways have been constructed accordingly. However, bridge design for high-speed railways requires more consideration than conventional railway design because fast-moving trains will lead to significant impact on bridge structures. Thus, this research proposes a revised design considering both bridge-rail longitudinal interaction and dynamic effect of trains to ensure stability of fast travelling trains. To validate the proposed design algorithm, numerical analyses are performed and compared using a constructed 250 m long bridge with 5 spans for a high-speed railway. From the numerical results, the proposed optimum design of high-speed railway bridges exhibits the most economic life-cycle-cost (LCC) when compared with several existing design approaches.