• Title/Summary/Keyword: 철근 유형

Search Result 50, Processing Time 0.02 seconds

Evaluation on Anchorage Performance of 57mm Headed Bars in Exterior Beam-Column Joint under Cyclic Loading (반복하중을 받는 외부 보-기둥 접합부에 정착된 57mm 확대머리철근의 정착성능평가)

  • Jung, Hyung-Suk;Chung, Joo-Hong;Choi, Chang-Sik;Bae, Baek-IL;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.68-75
    • /
    • 2021
  • In this study, the anchoring performance of 57mm headed bars anchored at the external beam-column joint under cyclic loading was evaluated. A total of 6 external beam-column joint test specimens were planned, and anchorage performance was evaluated by setting concrete compressive strength, side covering thickness, lateral reinforcement ratio, and fracture type as major experimental variables. As result of cyclic loading test, it was found that the factors that had the greatest influence on the anchoring capacity of the large-diameter headed bar anchored at the joint were the side cover thickness and the transverse reinforcing bar. It was confirmed that the 57mm large-diameter headed bar anchored at the external beam-column joint showed sufficient anchoring capacity even under cyclic loading.

사망재해를 통한 아파트공사 철근.콘크리트공종 재해예방 투자에 관한 연구

  • 김시억;손기상
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.405-410
    • /
    • 2000
  • 면적 99,268.38$km^2$속에 4,700만명 인구가 살고 있는 현실에서 우리의 주거 형태는 점점 고층화, 대형화 될 수밖에 없는 실상이다. 여기에 건설공사 역시 위험이 검증되지 않은 신기술 형태가 가미되고, 업종에 종사하는 근로자의 유형 역시 노령화되어 건설공사 현장 재해는 날로 증가 되고있는 것이 지금의 현실이기도 하다.(중략)

  • PDF

Lap Details Using Headed Bars and Hooked Bars for Flexural Members with Different Depths (확대머리 철근과 갈고리 철근을 이용한 단차가 있는 휨부재의 겹침이음상세)

  • Lee, Kyu-Seon;Jin, Se-Hoon;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.144-152
    • /
    • 2016
  • This paper focuses on the experimental study for investigating the performance for lap splice of hooked or headed reinforcement in beam with different depths. In the experiment, seven specimens, with its variables as the lap length of headed or hooked bar, the existence of stirrups, etc., was manufactured. Bending test was conducted. Lap strengths by test were compared with the theoretical model based on KCI2012. The result showed that the cracks at failure mode occurred along the axial direction to a headed bar. The initial stiffness and the stiffness after initial crack were similar for all specimens. For HS series specimens without stirrups, a 25% increase in lap length was increased 11.8~18.1% maximum strengths. For HH series specimens without stirrups, a increase in lap length did not affect the maximum strengths because of the pryout failure of headed bar. For HS series specimens, the theoretical lap strengths based on KCI2012 considering the B grade lap and the reduction factor for stirrup were evaluated. They are smaller than the test strengths and can ensure the safety in terms of strength capacity. For HH series specimens, the stirrups in the lap zone are needed to prevent the pryout behaviour of headed bar.

Shear Reinforcement for Flat Plate-Column Connections Using Lattice Bars (래티스 철근을 이용한 무량판-기둥 접합부의 전단보강)

  • Ahn Kyung-Soo;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.191-200
    • /
    • 2005
  • Flat plate-column connections are susceptible to brittle punching shear failure, which may result in collapse of the overall structure. In the present study, a new shear reinforcement for the plate-column connection, the lattice shear reinforcement was developed. Experimental study for the lattice shear reinforcement was performed. Shear strength and ductility of the specimens reinforced with the lattice bars were compared with those of unreinforced specimens. The test results showed that the strength and ductility of the specimens with the lattice shear reinforcement were improved by 1.37 and 9.16 times those of the unreinforced specimens, respectively. These results indicates that the lattice shear reinforcement is superior in ductility to the shear stud-rail which is popular in U.S. Based on the test results, the design method for the lattice shear reinforcement was developed.

Energy-Based Seismic Evaluation of Reinforced Concrete Structures I - Flexural Components (에너지에 근거한 철근콘크리트 구조물의 내진성능 평가 I - 휨요소)

  • 김장훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.33-44
    • /
    • 1999
  • An energy balance procedure is developed to incorporate the effects of earthquake duration which involves the effect of cyclic loading and the corresponding cumulative plastic deformation. Particular emphasis is given to the flexural failure of non-seismically designed columns of reinforced concrete frames. For this, conceptual strength deterioration models for columns, governed by concrete, anchorage failure and longitudinal steel fracture due to low-cycle fatigue, are proposed. It is evident that the energy-based method has good agreement with the experimental data and is able to predict the failure mode.

  • PDF

Blast Performance Evaluation based on Finite Element Analysis for Reinforced Concrete Columns with Shear and Flexure Failure Modes (유한요소해석 기반 휨 및 전단 파괴형 철근콘크리트 기둥의 폭발 성능평가)

  • Ye-Eun Kim;Quoc To Bao;Kihak Lee;Jiuk Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.307-314
    • /
    • 2023
  • This study aims to evaluate the blast performance of shear and flexure failure modes of reinforced concrete columns using finite-element analyses. To accomplish this goal, finite-element models of flexure- and shear-governed columns were developed and validated using previous experimental results. A blast simulation model was developed using a coupling-modeling method, and the modeling method was applied to the validated-column models. Blast responses were obtained for various blast loading scenarios, and the blast performance was determined using limits based on ductility and axial loading capacity.

Development of a Mobile Game for Smart Education of Rebar Work (철근공사 스마트 학습을 위한 모바일 게임 개발)

  • Park, U-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2022
  • In this study, to improve educational motivation and learning outcomes, a mobile app using game elements was developed, and the effect of its application in rebar work education was analyzed. Using the 4F(Figure out-Focus-Fun design-Finalize) process, which is a game development model, a mobile learning app for rebar work was developed that considers the characteristics of college students familiar with smartphone use, and the app was developed in a manner that utilizes game mechanics such as learning missions and points to stimulate a learner's interest and improve educational motivation. The results show that the proposed app for rebar work is positively evaluated in terms of interface style, perceived usefulness, perceived ease of use, perceived enjoyment, attitude toward using, and intention to use. Therefore, it can be concluded that using the learning game app for rebar work in classes can contribute to improving a learner's performance in various aspects.

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

System Reliability Analysis of a Shallow Foundation using Correlated Failure Modes (유상관 파양류형에 의한 얕은 기초의 신뢰도 해석)

  • Kim, Yong-Pil;Im, Byeong-Jo;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.67-78
    • /
    • 1986
  • This paper presents how to determine the system reliability of a typical shallow foundation constituted four potential correlated failure modes of hearing capacity (BCM), consolidation settlement (CSM), moment (MFM), and tension shear (PCM). Through the idenfication of the distinct and different modes and evaluation of range of system reliability, the obtained conclusions are as follows; 1. The CSM and the PCM are the lowest and highest of reliability indices of single performance function, and the BCM and the MFM are medium of them. 2. For the correlated failure modes, the hi-modal bounds Is narrower and lower of failure probability than the unimodal bounds. Not to be overestimated, therefore, the system reliability should be based on the second-order bounds using correlated performance functions.

  • PDF

An Experimental Study on the Behavior of Hybrid Beam Composed of End Reinforced Concrete-Center Steel (단부 철근콘크리트-중앙부 철골로 구성된 복합(複合)보의 거동(擧動)에 관한 실험적 연구)

  • Kang, Byung Su;Kim, Seong Eun;Choi, Hyun Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.413-421
    • /
    • 2002
  • This study sought to understand the mechanical behavior according to the shape of the connecting part of the hybrid beam. This part is composed of central steel. with the end reinforced by concrete in the experiment of cyclic loading. The experimental result was compared and verified with the ultimate strength formula. Likewise, the composite effect and the effectiveness of seismic capacity and stress transmission were examined. The types of each setup were as follows: main bars by welding type, reinforcing by end-plate type, reinforcing by shear connector type, and shear connector type. Results showed that the reinforcing by end-plate type and the shear connector type had excellent strength and seismic capacity as well as better stress transmission. This was due to the unity between reinforced concrete and the steel's connecting part. However, the experimental result was somehow different from the previously established ultimate strength formula. Thus, a definite ultimate strength formula is required.