• Title/Summary/Keyword: 철근콘크리트 전단벽

Search Result 132, Processing Time 0.021 seconds

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.

Verification of Reinforcing Arrangement Error in Precast Concrete Shear Walls Using BIM and Presentation of Flexural Ductility Model (BIM을 이용한 프리캐스트 콘크리트 전단벽의 배근 오류 검증 및 휨 연성 모델 제시)

  • Ju-Hyun Mun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.27-36
    • /
    • 2024
  • This study established a BIM procedure considering manufacturing errors in the production process, and evaluated the flexural ductility of precast all-lightweight aggregate concrete special shear walls (PLASWs) with spliced sleeve technique. In the production process, the concrete cover thickness of PALSW was on average 1.28 times greater than the cross-sectional details of the specimen modeled with Revit BIM program. In particular, the bending inner radius of the hoop and inner-cross tie were greater than the designed details. Consequently, the confinement effect of core concrete reduced from 64% to 54% due to the manufacturing errors in the transverse reinforcing bars, resulting in a decrease in the ductility of PALSW by approximately 4.91%. Considering these findings, the BIM of PLASW with spliced sleeve technique should compliment the bending inner radius of the transverse reinforcing bars, and the defined brittleness increase coefficient reflecting the decreased core concrete confining pressure in the stress-strain relationship of confined concrete should be evaluated as 1.8.

An Experimental Study on the Structural Performance of Lightly Reinforced Concrete Frame Retrofitted with Concrete Block and Cast-In Place Infilled Wall (블록 끼움벽과 현장타설 끼움벽으로 보강된 비내진 상세 철근콘크리트 골조의 구조성능에 관한 실험적 연구)

  • Choi, Chang-Sik;Lee, Hye-Yeon;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.199-206
    • /
    • 2005
  • In many other countries framed structures with inadequate lateral strength and stiffness have been strengthened by providing reinforced concrete infilled wall. There is a general agreement among researchers those infilled walls have 3-5times greater lateral strength compared with bare frame. The main objective of this research is to investigate the behavior and strength of reinforced concrete frames infilled with concrete block and cast-in-place reinforced concrete panels used for strengthening the structure against seismic action. For this purpose three 1/3 scale, one-bay, one-story reinforced concrete infilled frames were tested under reversed cyclic loading simulating the seismic effect. The results indicate that infilled walls increase both strength and stiffness significantly under lateral loads. Especially Strength capacity and initial stiffness of CIP infilled wall increased 3.8 times and 6.6 times higher than lightly reinforced concrete frame.

Evaluation of Shear Performance on Two Sides Confined SHCC Infill Walls after Cross-Sectional Shape Modification (2면 구속한 SHCC 끼움벽의 단면 감소에 따른 전단성능 평가)

  • Cha, Jun-Ho;Nam, Sang-Hyun;Kim, Sun-Woo;Lee, Young-Oh;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.55-56
    • /
    • 2010
  • Infill walls have been investigated experimentally and theoretically by many researchers during last decades. The objective of this research is to evaluate structural strengthening performance of lightly reinforced concrete with reduced the inside cross-section of Strain-hardening cement composites(SHCC) experimentally.

  • PDF

Required Strength Spectrum of Low-Rise Reinforced Concrete Shear Wall Buildings with Pilotis (필로티 구조를 가진 저층 철근콘크리트 전단벽식 건물의 요구내력 스펙트럼)

  • Lee, Kang-Seok;Oh, Jae-Keun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.61-69
    • /
    • 2007
  • The main purpose of this study is to provide a basic information for the seismic capacity evaluation and the seismic design of low-rise reinforced concrete (RC) shear wall buildings, which are comprised of a pilotis in the first story. In this study, relationships between strengths and ductilities of each story of RC buildings with pilotis are investigated based on the nonlinear seismic response analysis. The characteristics of low-rise RC buildings with pilotis are assumed as the double degree of freedom structural systems. In order to simulate these systems, the pilotis is idealized as a degrading trilinear hysteretic model that fails in flexure and the upper story of shear wall system is idealized as a origin-oriented hysteretic model that fails in shear, respectively. Stiffness properties of both models are varied in terms of story shear coefficients and structures are subjected to various ground motion components. By analyzing these systems, interaction curves of required strengths for various levels of ductility factors are finally derived for practical purposes. The result indicates that the required strength levels derived can be used as a basic information for seismic evaluation and design criteria of low-rise reinforced concrete shear wall buildings having pilotis structure.

A Study on Out-of-Plane Flexural Behavior of the Structure with a Vertical Plane Connection between a Reinforced Concrete Wall and a Steel Plate Concrete Wall (철근 콘크리트 벽과 강판 콘크리트 벽이 수직으로 만나는 이질접합 구조물의 면외 휨 거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Hahm, Kyung Won;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • This paper describes the experimental study on the structural behavior of the vertical plane connection between a reinforced concrete wall and a steel plate concrete wall under out-of-plane flexural loads. The specimen was tested under a dynamic test with the use of cyclic loads. As a result of the test, ductile failure mode of vertical bars was shown under a push load and the failure load was more than that of the nominal strength of the specimen. However, the shear failure mode of the connection was confirmed in case of a pull test and thus demonstrates a need for a shear reinforcement.

Shear Capacity of Composite Basement Walls (합성 지하벽의 전단성능)

  • 김성만;이성호;서수연;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.321-330
    • /
    • 2002
  • This paper presents the experimental results of composite basement wall in which H-pile and reinforced concrete wall are combined using shear connector Twelve specimens are tested to evaluate the shear capacity of the wall. Main variables in the test are composite ratio, distribution of shear connector, thickness of wall, shear-span ratio, and shear reinforcement. Test results indicate that the shear capacity of test specimens varies with the foregoing variables except the composite ratio. The results are compared with strengths predicted using the equations of ACI 318-99, Zsutty, and Bazant. Based on this investigation, a method for predicting the shear strength of composite basement walls is proposed.

Evaluation of Inelastic Performance of a Reinforced Concrete Shear Wall-Frame System Designed by Resizing Algorithms (재분배 기법 적용에 따른 철근 콘크리트 전단벽-골조 시스템의 비선형 특성 평가)

  • An, Jin-Woo;Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.473-480
    • /
    • 2011
  • Recently, the resizing algorithms based on the displacement participation factors have been developed for sizing members to satisfy stiffness criteria. It is proved that this resizing algorithms made for utilizing worker's stiffness design are practical and rational due to the simplicity and convenience of the method. The resizing algorithm can be practically and effectively applied to drift design of buildings. However, the researches on the change of inelastic behavior by the resizing algorithm has been insufficient. To identify the effect on the inelastic behavior of buildings by the resizing method, this study used the reinforced concrete shear wall-frame example. Through the application of the resizing method, the weights of shear wall in the lower class and the weights of columns and beams in the upper class increased respectively. And the initial stiffness of the building increased and the ductility of the buildings had similar with that of the initial structure.

Structural Performance of Hybrid Coupled Shear Wall System Considering Connection Details (접합부 상세에 따른 복합 병렬 전단벽 시스템의 구조 성능)

  • Park, Wan Shin;Yun, Hyun Do;Kim, Sun Woong;Jang, Young Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.128-137
    • /
    • 2012
  • In high multistory buildings, hybrid coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic loads. Hybrid coupled shear walls are usually built over the whole height of the building and are laid out either as a series of walls coupled by steel beams with openings to accommodate doors, elevator walls, windows and corridors. In this paper, the behavior characteristics of hybrid coupled shear wall system considering connection details is examined through results of an experimental research program where 5 two-thirds scale specimens were tested under cyclic loading. Such connections details are typically employed in hybrid coupling wall system consisting of steel coupling beams and reinforced concrete shear wall. The test variables of this study are embedment length of steel coupling beam and wall thickness of concrete shear wall. The results and discussion presented in this paper provide fundamental data for seismic behavior of hybrid coupled shear wall systems.

Ductility Evaluation of Heavyweight Concrete Shear Walls with Wire Ropes as a Lateral Reinforcement (와이어로프로 횡보강된 고중량콘크리트 전단벽의 연성평가)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.207-214
    • /
    • 2015
  • This study examined the feasibility of wire ropes as lateral reinforcement at the boundary element of heavyweight concrete shear walls. The spacing of the wire ropes varied from 60 mm to 120 mm at an interval of 30 mm, which produces the volumetric index of the lateral reinforcement of 0.126~0.234. The wire ropes were applied as a external hoop and/or internal cross-tie. Five shear wall specimens were tested to failure under constant axial load and cyclic lateral loads. Test results showed that with the increase of the volumetric index of the lateral reinforcement, the ductility of shear walls tended to increase, whereas the variation of flexural capacity of walls was minimal. The flexural capacity of shear walls tested was slightly higher than predictions determined from ACI 318-11 procedure. The displacement ductility ratio of shear walls with wire ropes was higher than that of shear wall with the conventional mild bar at the same the volumetric index of the lateral reinforcement. In particular, the shear walls with wire rope index of 0.233 achieved the curvature ductility ratio of more than 16 required for high-ductility design.