• Title/Summary/Keyword: 철근콘크리트구조물

Search Result 1,425, Processing Time 0.033 seconds

Seismic Behavior Evaluation of Embedded Kagome Damping Device (콘크리트에 매립된 카고메 감쇠시스템의 내진거동평가)

  • Hur, Moo-Won;Lee, Sang-Hyun;Kim, Jong-Ho;Hwang, Jae-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.84-91
    • /
    • 2019
  • Recently, there has been a tendency to improve seismic performance of building structure by installing a steel hysteretic damping device which is economically efficient and easy to install and maintain. However, for a reinforced concrete building, a set of complicated connecting hardware and braces to fix the steel hysteretic damping device yields deteriorated reliability in damping performance. Therefore, this study presents a method of directly embedding a Kagome damper, which was investigated in previous researches, into a concrete structure without additional connecting hardware. Moreover, in this study, a series of experiments conducted to provide a basis of the Kagome damper by confirming the seismic behavior for various embedded lengths. As a result, in a group of the embedded length of $1.0l_d$, the dampers were pulled out, while concrete breakout occurs. In a group of $2.0l_d$, neither pull-out nor concrete breakout occurred, while the dampers show stable behavior. Moreover, the buried length of $2.0l_d$ has 1.3 times better energy dissipation capacity. The system presented in this study can reduce the cost and period for installing, omitting making additional hardware.

Seismic Performance Evaluation of a RC Special Moment Frame Building (철근 콘크리트 특수 모멘트 골조 건물의 내진 성능 평가)

  • Kim, Tae-Wan;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.39-45
    • /
    • 2007
  • In this study the probability and the reliability-based seismic performance evaluation procedure proposed in the FEMA-355F was applied to a reinforced concrete moment frame building. For the FEMA procedure, which was originally developed for steel moment frame structures, to be applied to other structural systems, the capacity should be re-defined and the factors reflecting the uncertainties related to capacity and demand need to be determined. To perform the evaluation procedure a prototype building was designed per IBC 2003, and inelastic dynamic analyses were conducted applying site-specific ground motions to determine the parameters for performance evaluation. According to the analysis results, distribution of the determined capacities turned out to be relative]y smaller than that of the demands, which showed that the defined capacity was reasonable. It was also shown that the prototype building satisfied the target performance since the determined confidence levels exceeded the otjectives for both local and global collapses.

A Study On Application Of Structure Grounding Electrode System For Optimization of Minimized GIS Grounding System (축소형 GIS 접지시스템 최적화를 위한 구조체 접지전극 적용에 관한 연구)

  • Chang, Jeong-Ho;Kim, Hyun-Il;Lee, Seong-Hoon;Lim, Jae-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.424_425
    • /
    • 2009
  • 접지시스템은 인체의 안전을 확보함과 동시에 기기 및 장치의 확실한 동작과 절연 파괴를 방지하기 위한 가장 중요한 시스템이라 할 수 있다. 접지시스템은 전원설비용, 통신설비용, 피뢰설비용 접지로 크게 분류할 수 있으며 사고 발생 시 대지를 통하여 고장 전류를 신속하게 방전함으로서 기준전위를 유지하는 것을 목적으로 하며, 시스템 성능을 최적화하기 위하여 용도에 따라 서로 다른 목적의 접지라도 각 접지시스템을 본딩시켜 등전위를 형성하는 것이 가장 보편적으로 적용되는 설계 개념이다. 본 연구에서는 축소형 GIS 접지시스템의 계획과 시공에 있어서 좁은 지형조건에서 지반 보강용 철근 콘크리트 파일을 건축물 구조체 접지극으로 활용하여 mesh 접지망과 등전위화 함으로써 접지시스템의 효과를 증대 할 수 있는 방안을 제안하고 효과를 검증하고자 한다.

  • PDF

Finite Element Analyses of Seismically Vulnerable Reinforced Concrete Building Frame Retrofitted Using FRP Column Jacketing System (FRP 기둥 재킷 시스템이 보강된 지진 취약 철근콘크리트 건축물의 유한요소해석)

  • Shin, Jiuk;Lee, Sang-Youl;Ji, Dong-Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • This study develops finite element models for seismically-deficient reinforced concrete building frame retrofitted using fiber-reinforced polymer jacketing system and validates the finite element models with full-scale dynamic test for as-built and retrofitted conditions. The bond-slip effects measured from a past experimental study were modeled using one-dimensional slide line model, and the bond-slip models were implemented to the finite element models. The finite element model can predict story displacement and inter-story drift ratio with slight simulation variation compared to the measured responses from the full-scale dynamic tests.

Slab Effect on Inelastic Behaviors of High Strength RC Beam-Column Joints (고강도 RC 보-기둥 접합부의 비탄성 거동에 대한 슬래브의 영향)

  • 장극관;김윤일;오영훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.167-177
    • /
    • 1997
  • In thtx design of ductile moment -1csist1ng frnmcls (DMRFs) f'ollow~ng the. stlong columnweakbeam design philosophy, it is desirable that the joint and column remain essentiallyelastic in order to insure proper energy dissipation and lateral stability of the structure.Thv joint has been identifid as the "weak link: in DMRFs because any stiffness orstrength deterioration in this region can lead to substantial drifts and the possibility ofcollapse due to t'-delta effects. h3oreove1.. the tngintw is faced with the difficult task ofdetailing an element whose size is determined by theframing members, but \vhich mustresist a set of loads very different from those used in the design of the beams and columns.Four 3 -scale beam-column-slab joint assemblies were designed according to existing cod\ulcornerrequirements of' ACI 318-89. representing perimeter joints of DMRFs with reinforced highstrength concrete. The influence on aseismic behavior of beam-column joints due tomonolithic slab, has been investigated.lab, has been investigated.

Productivity Improvement through the Waste Elimination of Construction Process (건설공정의 낭비제거를 통한 생산성 향상 방안)

  • Mun Jeong-Mun;Kim Chang-Duk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.3 no.4 s.12
    • /
    • pp.93-103
    • /
    • 2002
  • The reinforcement concrete work is the work affected by structural safety, durability, and schedule with form work. The domestic reinforcement concrete works have mainly worked the process of re-barfabrication/assembly on site. Finally it have low productivity. Then this paper analyzed waste factors and the process of re-bar fabrication/assembly on site for the productivity improvement and value-added productivity improvement. Waste factor analysis aims at maximizing value-added by the value analysis of re-bar fabrication and assembly on site. Finally, Value-AddingActivity(VAA)ismuchlessthan non-value adding activity. Especially, Non-Value-Adding Activity(NVAA) generates waste such as the activity steps, labors, equipments, materials, time, and soon. And it was non-flow production, over production, and analyzed into having to shift value. This paper aimsat maximizing value-addingactivity and minimizingnon value-addingactivity through waste factor analysis in process for the improvement of value added productivity.

Flexual Retrofitted Effect on Structurally Damaged Reinforced Concrete Beam Strengthened with Steel Plate (구조적 손상을 입은 철근 콘크리트 보의 강판 휨보강 효과)

  • Lim, Tae-Geoun;Kim, Sung-Yong;Shin, Chang-Hoon;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.201-210
    • /
    • 2000
  • The Rehabilitation and repair of structurally deteriorated reinforced concrete structure become more necessary as time goes by. The goal of this study is that provide the data about flexural retrofitted effect of RC beam strengthened by Steel Plate. In order to provide the data, 6 specimens were manufactured and divided with standard specimen and damaged degree A, B, C. Division of damaged A, B, C is based on deflection and degree of crack. In the determination of deflection and degree of crack, we loaded standard specimen to failure under two-point bending to find yielding load and failure load, and then we found deflections and degree of crack that correspond to 75%, 100%, 105% of the yielding load of standard specimen respectively. When we are compared with standard specimen and strengthened specimens, we founded from the experimental results that flexural capacity of structurally damaged beam strengthened by Steel Plate incremented highly, ductility was decreased, and energy absorbtion capacity was almost same.

  • PDF

An Experimental Study on the Structural Behavior of Reinforced Concrete Columns Rehabilitated with Epoxy-Bonded Steel Plates (강판으로 보강된 철근콘크리트 기둥의 구조적 거동에 관한 실험적 연구)

  • Kim, Jin-Bai;Won, Young-Sul;Cho, Chul-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.269-277
    • /
    • 1999
  • The purpose of this study is to investigate the structural behavior of reinforced concrete columns rehabilitated with epoxy-bonded steel plates subjected to axial load. Eleven specimens were made to evaluate structural capacity of reinforced concrete columns rehabilitated with steel plates. This study considers the change of the internal force and the deformation of reinforced concrete column with reinforcing steel plates, and analyzes the effect of the improvement of strength and ductility. Based on the test results, this study brings the following conclusions. In case of the effect of reinforcement by the ratio of the same volume, the internal force for the test model, which the width of the reinforcing steel plate is small, is effectively higher. The smaller the width and the thickness of reinforcing steel plate, the more effective the effect of reinforcement is. For applying the theorical equation by Uzumeri, the maximum load and the coefficient of effective crossing reinforcement by the width and the thickness of steel plate reflected the properties of reinforcing steel plate.

  • PDF

Improvement and Evaluation of Structural Performance of Steel Fiber Reinforced Concrete Beams Using Early Age Concrete (초기재령 강섬유보강 철근콘크리트 보의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Kwak, Yoon-Keun;Kwon, Chil-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.129-137
    • /
    • 1999
  • Reinforced concrete structures using early age concrete were result in the degradation of structural performance due to crack, overload, unexpected vibration and impact load. It demands urgently that reinforced concrete structure using early age concrete should be improved the serviceability and structural performance with the application of new fiber materials. Therefore specimens, designed by the test varibles, such as with or without stirrup and percent of steel fiber incorporated, were constructed and tested to evaluate and develop the structural performance of reinforced steel fiber concrete beam. Based on the test results reported in this study, the following conclusions are made. Specimens, designed by the over 0.75% of steel fiber incorporated, were showed the ductile behavior and failed slowly with flexure and flexure-shear. Comparing with the load-displacement relationship of specimen BSS, designed by the recommendations of the Ministry of Construction and Transportation, reinforced steel fiber concrete beam using early age concrete, over 0.75% of steel fiber incorporated, gets enough load carrying capacity and ductility. Increasing the percent of steel fiber incorporated(0.25~2.0%), the ultimate shear stress of each specimen were increased 12~40% than that of control specimen SSS.

  • PDF

Flexural Capacity of Reinforced Concrete Beams Strengthened by Bow System (Bow 공법으로 보강된 철근콘크리트 보의 휨보강 성능)

  • Lim, Jae-Hyung;Moon, Jeong-Ho;Lee, Jae-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.181-187
    • /
    • 2009
  • This paper is to investigate about a new technique (Bow system) which is to develop the disadvantages of the external post-tensioned method. The purpose of this paper is to analyze about the prestress loss when the loads apply along the long term and to improve the capacity of the members strengthened by Bow system. The variables in the test program are the span/depth ratio, the amount of tendon area. And the test was carried out to confirm the long term behaviour. It is shown that can apply the current code in the design, and have no the structural problems about the prestress loss.