• Title/Summary/Keyword: 철근대체

Search Result 154, Processing Time 0.028 seconds

An Experimental Study on the Early-Age Behavior and Temperature Pattern of CRCP (CRCP의 초기거동 및 온도패턴에 관한 시험적 연구)

  • Cho, Dae Ho;Suh, Young Chan;Kim, Yeon Bok;Nam, Young Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.299-305
    • /
    • 1994
  • An experimental test section was placed in Pangyo-Guri Expressway to monitor the performance of CRCP(Continuously Reinforced Concrete Pavement). So far early-age behaviors of the test section have been monitored for about two years. The purposes of this paper are to analyze the early-age behavior and temperature pattern of the test section and to compare the results with those of similar test sections placed in Houston. As results of this study, following findings were obtained. The results of Pangyo-Guri test section were generally better than those of Houston test sections in terms of the early-age crack patterns. Type II cement was more effective than type I cement in controlling the early-age cracking. Afternoon placement was more effective than morning construction in controlling the early-age cracking in summer season.

  • PDF

Experimental Study on Flexural Capacity of Circular Concrete Beam Confined by Carbon Fiber Tubes (탄소섬유관으로 구속된 무근 원형 보의 휨성능에 관한 실험적 연구)

  • Lee, Kyoung-Hun;Hong, Won-Kee;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.37-43
    • /
    • 2007
  • Experiments for circular unreinforced concrete beams confined by carbon fiber tubes (CFT) made of carbon fiber sheets were performed. Selected test parameter was thickness of carbon fiber tube: 1.5mm (3 layers), 2.0mm (4 layers), 2.5mm (5 layers), and 3.0mm (6 layers). Based on the test results, an equation for estimating moment capacity of the circular beams confined by carbon fiber tubes was proposed. Comparison results showed good agreement up to 2.5mm (5 sheets) of the CFT thickness.

The Push-out Resistance Evaluation of Steel Pipe Cap with Perfobond Rib Shear Connector (퍼포본드로 보강된 강관말뚝머리의 압발저항성능 평가)

  • Koo, Hyun-Bon;Kim, Young-Ho;Kang, Jae-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.77-80
    • /
    • 2008
  • The conventional pile cap reinforcement systems regulated in the design specifications have some restrictions in design and construction such as disposition of reinforcing bars, insurance of anchoring length of reinforcements and requirement of shear key. This study suggests a new type of steel pipe pile cap system with perforated rib shear connector as an alternative to the conventional pile cap system for the improvement in structural performance and simplification of construction. And, experimental results of push-out are scribed for the evaluation of structural performance of the new pile cap system and it was compared to the structural behavior of conventional pile cap system.

  • PDF

Shaking Table Tests of 1/3-Scale 3-Story Wet-Jointed Precast Concrete Large Panel Box Model (1/3축소 3층 습식접합 프리캐스트 콘크리트 대형판 입체모델의 진동대 실험)

  • 이한선
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.1
    • /
    • pp.115-127
    • /
    • 1993
  • 본 연구의 목적은 프리캐스트 콘크리트(P.C) 대형판 아파트 구조물에 대한 우리나라 내진설계기준안 및 지침을 수립하기 위해 필요로 하는 정보를 취득하는데 있다. 이것은 실제 지진과 유사한 진동을 발생시키는 진동대를 사용하여 P.C대형판 구조물의 거동을 분석관찰함으로써 달성되었다. 여기에 사용된 시험체중의 하나는 습식접합 1/3 축소 3층 입체 P.C모델이었다. 지진파를 일으키기 위해 4mx4m 크기의 진동대가 사용되었다. 또한 선택한 입력지진가속도파는 Taft N21E 성분기록지진파로서 최대지진가속도(PGA)는 원하는 지진세기수준에 따라 조정되었고 시간축으로는 동적상사성법칙에 따라 축소되었다. 이 P.C모델의 진동대 실험을 통해 얻은 결과를 근거로 하여, 근거로 하여 다음과 같은 결론을 도출하였다. (1)이 시험체에 관한한, 지진안전계수는 7-8정도로 나타났으며, (2)이 P.C모델이 감쇠계수는 대체로, 철근콘크리트구조물 감쇠계수의 두배에 해당하는 값인 8%정도이며, (3) 이 모델은 접합부의 벌어짐과 미끄러짐에 의한 에너지소산을 통해서 2-3정도의 전체적인 변위연성비를 보여주었다.

A Study on Application for Deck Plate Substitute Type Wood System Form of Frame Type Parking Lot (골조형 주차장의 Deck Plate 대체형 목제 시스템 거푸집 적용성 연구)

  • Shin, Yong-Jae;Shin, Woon-Sik;Heo, Jae-Won;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.123-126
    • /
    • 2006
  • Existing Deck Plate for a one of system forms, there is various advantage and application actual results increasing rapidly. But design of deck is depending on engineering data collections or design data on deck manufacture ordinarily. When construct, is responsible for deflection occurrence, And Because confirmation of crack occurrence region is impossible, there is difficulty of repair, reinforcement about crack and water leakage. According to got following conclusion as result that economic performance, preservation administration and repair reinforcement develops easy using steel truss snap tie by wedge pin on coating plywood that is slab Panel Wood System Form method of construction there is Deck Plate's advantage. (1) In stab lower part is exposed disjointing in which a criminal is fastened to be interrogated after construction acceptance and repair, reinforcement of crack is possible (2) Construction cost curtailment effect of about 29.2% than conventional type and about 10% than deck plate (3) Construction period reduction of about 3 day than conventional type and about 0.3 day than deck plate (4) Labor curtailment effect more than about $29{\sim}50%$ from conventional type

  • PDF

The Structural Performance Evaluation of Steel Pipe Pile Cap with Perfobond Rib Shear Connector (유공강판 전단연결재로 보강된 강관말뚝머리의 구조 성능 평가)

  • Koo, Hyun-Bon;Kim, Young-Ho;Kang, Jae-Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.843-851
    • /
    • 2008
  • The conventional pile cap reinforcement systems regulated in the design specifications have some restrictions in design and construction such as requirement of shear key, disposition of reinforcing bars and insurance of anchoring length of reinforcements. This study suggests a new type of steel pipe pile cap system with perforated flat bar shear connector as an alternative to the conventional pile cap system for the improvement in structural performance and simplification of construction. And, experimental results of push-out and bending behavior are scribed for the evaluation of structural performance of the new pile cap system and it was compared to the structural behavior of conventional pile cap system.

Concrete Shear Strength of FRP Bar Reinforced Concrete BeamAccording to Variation of Flexural Reinforcement Ratio (FRP Bar 콘크리트 보의 휨보강근비 변화에 따른 콘크리트 전단강도)

  • No, Kyeung-Bae;Jin, Chi-Sub;Jang, Hui-Suk;Kim, Hee-Sung;Hwang, Geum-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.76-82
    • /
    • 2006
  • The concrete shear strength of FRP Bar reinforced concrete beam according to the variation of flexural reinforcement ratio was investigated. A number of experimental result showed that the concrete shear strength was lower than that of RC beam, but it was increased according to the increasement of reinforcement ratio. Shear strength correction factors considering the kind and reinforcement ratio of FRP Bar was proposed using the proposed formula in the literature and regression analysis of the experimental result.

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Evaluation for Progressive Collapse Resistance of a RC Flat Plate System Using the Static and Dynamic Analysis (정적 및 동적 해석을 통한 철근콘크리트 무량판 구조의 연쇄 붕괴 저항 성능 평가)

  • Lee, Seon-Woong;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.245-252
    • /
    • 2011
  • Currently, the design guidelines for the prevention of progressive collapse are not available in Korea due to the lack of study efforts in progressive collapse resistance evaluation of RC flat plate system. Therefore, in this study, three types of analysis were conducted to evaluate the progressive collapse resistance of a RC flat plate system. A linear static analysis was carried out by comparing the demand-capacity ratio (DCR) differences of the systems using the alternate load path method, which is the guideline of GSA. A dynamic behavior was investigated by checking the vertical deflection after removal of the column using the linear dynamic analysis. Lastly, a maximum load factor was investigated using the nonlinear static analysis. The finite element (FE) analyses were conducted using various parameters to analyze the results obtained using effective beam width (EB) model and plate element FEM (PF) model. This study results showed that the strength contributions of the slab in the EB models are underestimated compared to those obtained from the PF models. Therefore, a detailed FE analysis considering the slab element is required to thoroughly estimate the progressive collapse resisting capacity of flat plate system. The scenario of the corner column (CC) removal is the most dangerous conditions where as the scenario of the inner column (IC) removal is the least dangerous conditions based on the consideration of various parameters. The analysis results will allow more realistic evaluations of progressive collapse resistance of RC flat plate system.

Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors (유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험)

  • Lee, Kyoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.285-291
    • /
    • 2016
  • The purpose of this study was to evaluate the structural capacity of steel pipe pile specimens reinforced with hollow steel plate shear connectors by pull-out test. Compressive strength testing of concrete was conducted and yield forces, tensile strengths and elongation ratios of re-bars and hollow steel plate were investigated. A 2,000kN capacity UTM was used for the pull-out test with 0.01mm/sec velocity by displacement control method. Strain gauges were installed at the center of re-bars and hollow steel plates and LVDTs were also installed to measure the relative displacement between the loading plate and in-filled concrete pile specimens. The yield forces of the steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.44-fold and 1.53-fold compared to that of a control specimen, respectively. Limited state forces of steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.23-fold and 1.29-fold compared to that of a control specimen, respectively. Yield state displacement and limited state displacement of steel pipe pile specimens reinforced with hollow steel plate shear connector were decreased 0.61-fold and 0.42-fold compared to that of a control specimen, respectively.