• Title/Summary/Keyword: 철광석 가격

Search Result 7, Processing Time 0.027 seconds

Forecasting of Iron Ore Prices using Machine Learning (머신러닝을 이용한 철광석 가격 예측에 대한 연구)

  • Lee, Woo Chang;Kim, Yang Sok;Kim, Jung Min;Lee, Choong Kwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.57-72
    • /
    • 2020
  • The price of iron ore has continued to fluctuate with high demand and supply from many countries and companies. In this business environment, forecasting the price of iron ore has become important. This study developed the machine learning model forecasting the price of iron ore a one month after the trading events. The forecasting model used distributed lag model and deep learning models such as MLP (Multi-layer perceptron), RNN (Recurrent neural network) and LSTM (Long short-term memory). According to the results of comparing individual models through metrics, LSTM showed the lowest predictive error. Also, as a result of comparing the models using the ensemble technique, the distributed lag and LSTM ensemble model showed the lowest prediction.

해운이슈 - 포스코경영연(硏), '철강 원료업계의 구조개편과 파급영향' 발표 - 소비국인 중국과 메이저 원료사의 주도로 가격체제 다양화

  • 한국선주협회
    • 해운
    • /
    • no.9 s.66
    • /
    • pp.20-25
    • /
    • 2009
  • 최근 철강 원료업계의 대규모 구조개편 움직임이 재부상하고 있으며, 과거와는 다른 특징을 가지며 전개되고 있다. BHP빌리톤과 Rio Tinto의 철광석 JV 설립 합의를 비롯하여, 철광석 및 원료탄 업계에서 메이저업체 간 합종연횡이 신조류로 등장했다. 이에 따라 현재의 장기가격 체제가 붕괴되고 최대 소비국인 중국과 메이저 원료사의 주도로 가격 체제가 다양한 형태로 변화될 전망이다. 다음은 포스코경영연구소가 발표한 보고서를 정리한 것이다.

  • PDF

A Comparative Analysis of the Forecasting Performance of Coal and Iron Ore in Gwangyang Port Using Stepwise Regression and Artificial Neural Network Model (단계적 회귀분석과 인공신경망 모형을 이용한 광양항 석탄·철광석 물동량 예측력 비교 분석)

  • Cho, Sang-Ho;Nam, Hyung-Sik;Ryu, Ki-Jin;Ryoo, Dong-Keun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • It is very important to forecast freight volume accurately to establish major port policies and future operation plans. Thus, related studies are being conducted because of this importance. In this paper, stepwise regression analysis and artificial neural network model were analyzed to compare the predictive power of each model on Gwangyang Port, the largest domestic port for coal and iron ore transportation. Data of a total of 121 months J anuary 2009-J anuary 2019 were used. Factors affecting coal and iron ore trade volume were selected and classified into supply-related factors and market/economy-related factors. In the stepwise regression analysis, the tonnage of ships entering the port, coal price, and dollar exchange rate were selected as the final variables in case of the Gwangyang Port coal volume forecasting model. In the iron ore volume forecasting model, the tonnage of ships entering the port and the price of iron ore were selected as the final variables. In the analysis using the artificial neural network model, trial-and-error method that various Hyper-parameters affecting the performance of the model were selected to identify the most optimal model used. The analysis results showed that the artificial neural network model had better predictive performance than the stepwise regression analysis. The model which showed the most excellent performance was the Gwangyang Port Coal Volume Forecasting Artificial Neural Network Model. In comparing forecasted values by various predictive models and actually measured values, the artificial neural network model showed closer values to the actual highest point and the lowest point than the stepwise regression analysis.

A System Dynamics Model for Basic Material Price and Fare Analysis and Forecasting (시스템 시뮬레이션을 통한 원자재 가격 및 운송 운임 모델)

  • Jung, Jae-Heon
    • Korean System Dynamics Review
    • /
    • v.10 no.1
    • /
    • pp.61-76
    • /
    • 2009
  • We try to use system dynamics to forecast the demand/supply and price, also transportation fare for iron ore. Iron ore is very important mineral resource for industrial production. The structure for this system dynamics shows non-linear pattern and we anticipated the system dynamic method will catch this non-linear reality better than the regression analysis. Our model is calibrated and tested for the past 6 year monthly data (2003-2008) and used for next 6 year monthly data(2008-2013) forecasting. The test results show that our system dynamics approach fits the real data with higher accuracy than the regression one. And we have run the simulations for scenarios made by possible future changes in demand or supply and fare related variables. This simulations imply some meaningful price and fare change patterns.

  • PDF

Factor Analysis Affecting on the Charterage of Capesize Bulk Carriers (케이프사이즈 용선료에 미치는 영향 요인분석)

  • Ahn, Young-Gyun;Lee, Min-Kyu
    • Korea Trade Review
    • /
    • v.43 no.3
    • /
    • pp.125-145
    • /
    • 2018
  • The Baltic Shipping Exchange is reporting the Baltic Dry Index (BDI) which represents the average charter rate for bulk carriers transporting major cargoes such as iron ore, coal, grain, and so on. And the current BDI index is reflected in the proportion of capesize 40%, panamax 30% and spramax 30%. Like mentioned above, the capesize plays a major role among the various sizes of bulk carriers and this study is to analyze the influence of the factors influencing on charter rate of capesize carriers which transport iron ore and coal as the major cargoes. For this purpose, this study verified causality between variables using Vector Error Correction Model (VECM) and tried to derive a long-run equilibrium model between the dependent variable and independent variables. Regression analysis showed that every six independent variable has a significant effect on the capesize charter rate, even at the 1% level of significance. Charter rate decreases by 0.08% when capesize total fleet increases by 1%, charter rate increases by 0.04% when bunker oil price increases by 1%, and charter rate decreases by 0.01% when Yen/Dollar rate increases by 1%. And charter rate increases by 0.02% when global GDP increases by one unit (1%). In addition, the increase in cargo volume of iron ore and coal which are major transportation items of capesize carriers has also been shown to increase charter rates. Charter rate increases by 0.11% in case of 1% increase in iron ore cargo volume, and 0.09% in case of 1% increase in coal cargo volume. Although there have been some studies to analyze the influence of factors affecting the charterage of bulk carriers in the past, there have been few studies on the analysis of specific size vessels. At present moment when ship size is getting bigger, this study carried out research on capesize vessels, which are biggest among bulk carriers, and whose utilization is continuously increasing. This study is also expected to contribute to the establishment of trade policies for specific cargoes such as iron ore and coal.

  • PDF

Shipping Industry Support Plan based on Research of Factors Affecting on the Freight Rate of Bulk Carriers by Sizes (부정기선 운임변동성 영향 요인 분석에 따른 우리나라 해운정책 지원 방안)

  • Cheon, Min-Soo;Mun, Ae-ri;Kim, Seog-Soo
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.4
    • /
    • pp.17-30
    • /
    • 2020
  • In the shipping industry, it is essential to engage in the preemptive prediction of freight rate volatility through market monitoring. Considering that freight rates have already started to fall, the loss of shipping companies will soon be uncontrollable. Therefore, in this study, factors affecting the freight rates of bulk carriers, which have relatively large freight rate volatility as compared to container freight rates, were quantified and analyzed. In doing so, we intended to contribute to future shipping market monitoring. We performed an analysis using a vector error correction model and estimated the influence of six independent variables on the charter rates of bulk carriers by Handy Size, Supramax, Panamax, and Cape Size. The six independent variables included the bulk carrier fleet volume, iron ore traffic volume, ribo interest rate, bunker oil price, and Euro-Dollar exchange rate. The dependent variables were handy size (32,000 DWT) spot charter rates, Supramax 6 T/C average charter rates, Pana Max (75,000 DWT) spot charter, and Cape Size (170,000 DWT) spot charter. The study examined charter rates by size of bulk carriers, which was different from studies on existing specific types of ships or fares in oil tankers and chemical carriers other than bulk carriers. Findings revealed that influencing factors differed for each ship size. The Libo interest rate had a significant effect on all four ship types, and the iron ore traffic volume had a significant effect on three ship types. The Ribo rate showed a negative (-) relationship with Handy Size, Supramax, Panamax, and Cape Size. Iron ore traffic influenced three types of linearity, except for Panamax. The size of shipping companies differed depending on their characteristics. These findings are expected to contribute to the establishment of a management strategy for shipping companies by analyzing the factors influencing changes in the freight rates of charterers, which have a profound effect on the management performance of shipping companies.

Feasibility Analysis on Slag Reprocessing Project in Lubumbashi, Democratic Republic of the Congo (DR콩고 루붐바시 슬래그재처리사업(再處理事業)의 경제성(經濟性) 평가(評價))

  • Kim, Yu-Jeong;Kim, Dae-Hyoung
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.49-59
    • /
    • 2012
  • One of the world's top resource-rich countries, the Democratic Republic of the Congo has ample reserves of cobalt, iron ore, copper and diamond in particular. Importing most of major mineral resources, the Republic of Korea has examined-together with the Congo government since 2008-the possibility of a project where it supports port construction in the Democratic Republic of the Congo and acquires useful minerals such as zinc, cobalt and copper in exchange through slag reprocessing in the local city of Lubumbashi. This study conducted feasibility analysis on the slag reprocessing project in Lubumbashi, Congo and found that the project's payback period stands at 6.7 years, net present value(NPV) at 34 million dollars and internal rate of return(IRR) at 17.4%. According to sensitivity analysis that takes into account uncertainties concerning taxation, fixed cost, operational cost and resource prices, the NPV of the project ranges from -24.8 million dollars to 92.7 million dollars.