• Title/Summary/Keyword: 철골접합

Search Result 220, Processing Time 0.022 seconds

Evaluation of Vibration and Structural Performance of an Innovative Sliding Step Steel Stair Using Full-Scale Mock-up Test (실물대 목업실험에 의한 슬라이딩스텝 철골계단의 진동 및 구조성능 평가)

  • Kim, Sung Yong;Lee, Cheol Ho;Kim, Na Eun;Cho, Sung Sang;Chung, Woon Ok
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.511-522
    • /
    • 2014
  • In this study, an innovative steel stair system is presented which enables rapid erection and high quality control in both residential and office building construction. This system features two lightweight steel stringers of box shape, bolted connections easy to absorb construction tolerance, and stair steps movable transversely (or sliding steps) such that the work space needed for concrete stairway wall could be easily provided. In this type of stairway system, other than providing robust connecting details, ensuring vibration performance is especially important since this system may be vibration-sensitive due to lightweight nature and/or probable low damping. To tackle these issues, a series of full-scale mock-up tests were conducted by using box-shape stringer members with or without concrete-fill. The connection system was shown to be sufficiently stiff and strong, or it remained elastic even under the 160% of service load level. Among the seven stringer alternatives, five exhibited satisfactory vibration performance according to the related North American and European acceptance criteria.

Structural Behaviour of TEC-BEAM Connection with Steel Column Under Cyclic Loading (반복하중을 받는 TEC-BEAM 철골브라켓 접합부 거동평가)

  • Ju, Young Kyu;Kim, Ji Young;Kim, Myeong Han;Jung, Kwang Ryang;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.51-58
    • /
    • 2002
  • To reduce the story height for high-rise buildings, the TEC Beam is developed as a new composite beam composed of structural tee, precast concrete, stirrup, and site-in-cast reinforced concrete slab. The preliminary test of the proposed system was performed for simple beams and it showed a good behavior. However, for the field application of the system, it is required to develope a steel moment resisting connection using steel brackets on which upper rebars of the TEC BEAM are anchored. In this paper, three types of the proposed system are experimentally investigated. The parameters of the test are as follows: (1) the spacing of transverse bars, (2) the ratio of width of rebar's layer to bracket length. Specimens were classified as semi-rigid full strength by the Eurocode 4. It could be concluded that the proposed moment resisting system shows a good structural behavior and may be applicable in the filed.

A Study on the Simple Design Method of Semi-Rigid Connection with Angle in Steel Structure (강구조에서 ㄱ형강을 이용한 반강접 접합의 간편 설계)

  • Heo, Myong-Jae;Kim, Hong-Geun;Choi, Won-Gu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.261-273
    • /
    • 2011
  • Recently, the demands for steel frame are increasing because of the trend and due to the demand for bigger and higher buildings. In the analysis of typical steel frame, connections are based on the idealized fixed or pinned connection. A fixed connection assumes that the relative angle of each member before deformation is the same after the transformation. Therefore, the stiffener reinforces the connection to sufficient rigidity and stability of the panel zone. In the economical aspect, however, the necessity of connection that the stiffener reinforcement has omitted is increasing due to the excessive production as well as labor costs of connection. In contrast, pinned connection is assumed that bending moments between the beams and columns do not transfer to each member. This is easy to make in the plant and the construction is simple. However, the structural efficiency is reduced in pinned connection because connection cannot transfer moments. The introduction of this semirigid process can decide efficient cross-sectional dimensions that promote ease in the course of structural erection, as performed by members in the field-a call for safety in the entire frame. Therefore, foreign countries exert efforts to study the practical behavior and the results are applied to criterion. This paper analyzes the semirigid connection of domestic steel by design specifications of AISC/LRFD and make data bank that pertain to each steel. After wards, the results are compared to those of idealized connection; at the same time, this paper presents a design method that matches economic efficiency, end-fixity, and rotational stiffness.

Connection Performance of Steel Moment Frame with Out-of-Plane Beam Skew (면외방향 어긋난 보를 갖는 철골모멘트골조의 접합부 성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.84-91
    • /
    • 2022
  • This study investigated the behavior of out-of-plane skewed moment connections that were designed as IMFs, as per the Korean standards. A total of 14 finite element models were constructed with the consideration of two types (single- and double-sided connections) and four levels of skew angle (0°, 10°, 20°, and 30°). The results indicated that the skewed connections considered in this study met the acceptance criteria for IMFs given by the codes. However, the load-carrying capacities of skewed connections were decreased as the skew angle increased. For the connection with a skew angle of 30°, the peak load was noted to be 13% less and the energy dissipation capacity could be 26% less than that of non-skewed connection. In addition, because of the skewed nature, the stress distribution in the skewed beam flange near the connection was asymmetric and the stresses were concentrated on the beam inner flange. Column twisting induced by the skewed configuration was very small and negligible in the beam and column combination considered in this study.

A Case Study on Seismic Response of Haunch Repaired Steel MRFs (헌치로 보강된 철골모멘트골조의 지진응답 사례연구)

  • 이철호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.69-78
    • /
    • 1997
  • Recent test results of steel moment connections repaired with a haunch on the bottom side of the beam have been shown to be a very promising solution to enhancing the seismic performance of steel moment-resisting frames. Yet, litle is known about the effects of using such a repair scheme on the system seismic performance of structures. To investigate the effects of haunch repair on the system seismic performance, a case study was conducted for a 13-story steel frame building damaged during the 1994 Northridge earthquake. When haunches are incorporated in a steel moment frame, the response prediction is complicated by the presence of "dual" panel zones in the column. A new analytical modeling technique for the dual panel zone recently developed by the author was incorporated in the analysis. Incorporating the behavior of dual panel zone was among the most significant consideration in the analyses. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair.he repair.

  • PDF

Structural Performance Evaluation of End-plate Connections According to Constructional Quality in P.E.B System (P.E.B 시스템에서 시공상태에 따른 엔드플레이트 접합부의 구조성능평가)

  • Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.461-468
    • /
    • 2012
  • P.E.B (Pre-Engineering Building) system means an economical system, which designs and uses optimal section proportion of tapered members according to the magnitude of bending moment. However, it is hard to adjust the friction type bolted joint in the joint of tapered member in the P.E.B system. End-plate connection is mainly used in this system due to that difficulty. Because P.E.B system has end-plate vertical defacts by heat welding deformation, a gap between end-plates and rafter or rib can be observed. In this study, an examination of construction stability was throughly performed and analyzed by the investigation of permissible internal force of bolts in end-plate connections under the bending moment using the end-plate's initial connection-defect (gap).

Development of Beam-to-Column Connection Details with Horizontal Stiffeners in Weak Axis of H-shape Column (수평스티프너를 이용한 철골 기둥-보 약축접합부 상세 개발에 관한 연구)

  • Lee, Do Hyung;Ham, Jeong Tae;Kim, Sung Bae;Kim, Young Ho;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.641-652
    • /
    • 2004
  • The strong beam-to-column axis connections in steel structures have been studied for a long time to develop the strength and resistance of the connections. There have been very few studies, however, related to weak axis connections. Domestically, the bracket-type connection is commonly used in weak axis connections to elevate the efficiency of the constructions when the steel structures are constructed. The bracket-type connection detail has been applied moderately to weak axis connections. Therefore, the bracket-type connection in weak axis connections might be brittle and over-designed. The results of this study showed that the welding on the web of the column and the beam was unnecessary. In addition, this study confirmed that the new weak axis connection proposed in this study was superior to the previous connection in terms of strength and ductility.

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection Type (패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향에 관한 연구)

  • Lee, Cheol-Ho;Jeon, Sang-Woo;Kim, Jin-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.69-77
    • /
    • 2003
  • This paper presents test results on eight reduced beam section(RBS) steel moment connections. The testing program addressed bolted versus welded web connection and panel zone(PZ) strength as key variables, Specimens with medium PZ strength were designed to promote energy dissipation from both PZ and RBS regions such that the requirement for expensive doublet plates could be reduced. Both strong and medium PZ specimens with a welded web connection were able to provide satisfactory connection rotation capacity for special moment-resisting frames. On the other hand, specimens with a bolted web connection performed poorly due to premature brittle fracture of the beam flange of the weld access hole. If fracture within the beam flange groove weld was avoided using quality welding, the fracture tended to move into the beam flange base metal of the weld access hole. Plausible explanation of a higher incidence of base metal fracture in bolted web specimens was presented. The measured strain data confirmed that the classical beam theory dose not provide reliable shear transfer prediction in the connection. The practice of providing web bolts uniformly along the beam depth was brought into question. Criteria for a balanced PZ strength improves the plastic rotation capacity while reduces the amount of beam distortion ore also proposed.