• Title/Summary/Keyword: 천체운동개념

Search Result 12, Processing Time 0.023 seconds

Analysis of Elementary Students Modeling Using the Globe on the Cause of Seasonal Change (초등학생의 계절 변화 원인에 관한 지구본 활용 모델링 분석)

  • Suk, Yun Su;Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.673-689
    • /
    • 2022
  • To understand seasonal changes it is necessary to understand the relationship between celestial bodies in a three-dimensional space, and to this end, modeling activities in which students directly construct, use, evaluate, and modify three-dimensional models are important. In this study, the process of elementary school students using globes and light bulbs to model Earth's motion in a three-dimensional space as a cause of seasonal changes was analyzed. Seventeen sixth graders participated in the modeling process. After exploring phenomena and concepts related to seasonal change, students constructed models using globes and bulbs and used them to explain seasonal changes. Video data recording students' modeling process, students' activity sheets, and transcripts of post-interview were used as research data, and data triangulation was conducted. The modeling level analysis framework was also developed based on previous studies. In particular, the framework was developed in detail in this study in consideration of the concept of Earth's motion as well as understanding model and implementing modeling. In the final analysis framework, the 3D modeling level was classified from level 1 to level 3, and student performance that may appear at each level was specified. As a result of the study, there were two main levels of modeling using globes for elementary school students to explain seasonal changes. The rotation and tilt of the axis of rotation and revolution of the earth were considered but the level at which empirical evidence was not used (level 2), the level at which empirical evidence was used to explain seasonal chages (level 3). However, even when students use empirical evidence, it did not lead to the construction of a scientific model. In this study, the cause was explored in relation to the characteristics of the tool used for modeling.

SATELLITE'S LAUNCH WINDOW CALCULATION BY ASTRODYNAMICAL METHODS (천체역학적 방법을 이용한 인공위성의 최적발시간대)

  • 우병삼;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.308-319
    • /
    • 1994
  • We can launch satellites only at a certain time which satisfies special conditions, since the current techniques cannot overcome these constraints. Launch window constraints are the eclipse duration, solar aspect angle, attitude control, launch site and the launch vehicle constraints, etc. In this paper, launch window is calculated that satisfies all these constraints. In calculating launch window, the basic concepts are relative locations of the sun-satellite-earth system and relative velocities of these, and these requires geometric consideration for each satellite. Launch window calculation was applied to Kitsat 2(low earth orbit) and Koreasat(geostationary orbit). The result is shown in the form of a graph that has dates on the X-axis and the corresponding times of the given day on the Y-axis.

  • PDF