• Title/Summary/Keyword: 천이류

Search Result 262, Processing Time 0.03 seconds

Numerical Anslysis of Transcritical Flow in Open Channels Using High-Resolution scheme II. : Applications (고정확도 수치기법을 이용한 하천 천이류 해석 II. : 적용)

  • Kim, Won;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • A numerical model for analyzing transcritical flow in open channel is tested to various cases of channel shape. As the numerical models developed for transcritical flow until now mainly focused on the application to only prismatic or hypothetical channels, there are some restrictions to apply the nonprismatic channels. In this study, to verify the accuracy and stability of second-order implicit ENO scheme, the numerical model was applied to the channels which haute the varying channel bed and width. Also the numerical model was applied to unsteady flow as well as steady flow. The study shows that the numerical model provides good accuracy in the calculation of stage and velocity with no numerical oscillation, particularly in the calculation of hydraulic jump and discontinous flow Then the implicit ENO scheme demonstrated good accuracy as a high-resolution scheme and stability as an implicit scheme.

  • PDF

Unsteady Flow Analysis through the Subcritical-Supercritical Transition Region (개수로에서의 상류-사류 천이영역에 대한 부정류 해석)

  • 한건연;박재홍;이종태
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Numerical instability of Preissmann scheme is studied for unsteady flow analysis in a natural river. The solution strategies to overcome the instability problems are presented in this paper. The main causes of numerical instability of Preissmann scheme are transition flow, abrupt change in cross section, in-appropriate roughness coefficients, time step and distance step, rapidly rising hydrograph, dry bed and so on. Transition flow model is proposed for the analysis of the transition flow which changes from subcritical to supercritical or conversely. The subcritical and supercritical reaches are groped in the channel, then appropriate boundary conditions are introduced for each reach. The transition flow analysis produces stable solutions in calculating through the various transition conditions. Verification with an actual river system is necessary in the future.

  • PDF

Dam-Break and Transcritical Flow Simulation of 1D Shallow Water Equations with Discontinuous Galerkin Finite Element Method (불연속 갤러킨 유한요소법을 이용한 1차원 천수방정식의 댐 붕괴류 및 천이류 해석)

  • Yun, Kwang Hee;Lee, Haegyun;Lee, Namjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1383-1393
    • /
    • 2014
  • Recently, with rapid improvement in computer hardware and theoretical development in the field of computational fluid dynamics, high-order accurate schemes also have been applied in the realm of computational hydraulics. In this study, numerical solutions of 1D shallow water equations are presented with TVD Runge-Kutta discontinuous Galerkin (RKDG) finite element method. The transcritical flows such as dam-break flows due to instant dam failure and transcritical flow with bottom elevation change were studied. As a formulation of approximate Riemann solver, the local Lax-Friedrichs (LLF), Roe, HLL flux schemes were employed and MUSCL slope limiter was used to eliminate unnecessary numerical oscillations. The developed model was applied to 1D dam break and transcritical flow. The results were compared to the exact solutions and experimental data.

Numerical anslysis of Transcritical Flow in Open Channels Using High-Resolution scheme I. : Model Development (고정확도 수치기법을 이용한 하천 천이류 해석 I. : 모형 개발)

  • Kim, Won;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.45-55
    • /
    • 2001
  • Transcritical flow is a term intended to denote the existence of both supercritical and subcritical flows within a computational domain. The major problems that need to be addressed while modeling transcritical flows include handling the differing features of signal propagation in subcritical and supercritical flow regions and maintaining conservation. The present study proposes the implicit ENO method as a high-resolution scheme for transcritical flow. This implicit ENO scheme is based on the ENO method, a new class of uniformly high-order-accurate essentially non-oscillatory implicit scheme, which has the advantage of unconditional stability. The implicit ENO scheme has not been used for the transcritical flow in open channel until now. As a result of application to the hypothetical dam-break flow, the implicit ENO scheme was ploved to produce accurate results with good robustness even though in the case of verb strong shock wave.

  • PDF

Comparison Impulse Response Method with Method of Characteristics for Transient Analysis in a Pipeline System with hydraulic devices (수리구조물이 부착된 관망에서의 천이류 해석에 대한 임펄스응답법과 특성선방법의 비교 연구)

  • Song, Yong-Seok;Jang, Il;Kim, Sang-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1179-1183
    • /
    • 2007
  • 관망 내에서 흐름의 연속 방정식과 운동량 방정식을 상 미분으로 전개하여 해석한 특성선 방법은 주로 가압 관망체계(Pressurized Pipeline System)에서의 부정류 해석(Unsteady Analysis)에 사용 된다. 그러나 이특성선 방법은 천이류 해석을 위한 관망 재구성 과정에서 Courant수 조건의 만족을 위한 관의 재배열에 천문학적인 계산용량과 시간이 필요하다는 단점이 있다. 이는 현장 적용 시 압력파 전파속도의 불확실성과 연계되어 상당한 장해요소가 되고 있다. 이에 대안적인 방법으로서 임펄스응답법이 개발되었다. 이는 경계지점에서 복소수 유량에 대한 복소수 수두의 비율로써 정의된 관망에서의 수리임피던스를 역퓨리에 변환에 적용하여, 주파수 영역의 수치를 시간 영역으로 변환하여 응답함수를 산출한 후, 산출된 응답함수와 구해진 경계지점에서의 유량과의 적분을 통하여 임의의 지점에서의 수두 및 유량을 계산하는 방법이다. 임펄스 응답법은 관 부속물관의 특성을 기술하는 수학적 표현의 난해함으로 인해 지금까지는 단일관에 대한 연구에만 국한되어 왔다. 본 연구에서는 임펄스응답법을 수리구조물이 부착된 관망에 적용하여 다양한 조건에서 천이류 분석을 시행하였다. 즉, 에어챔버 및 서지탱크와 같은 수리구조물을 각각에 대한 수리임피던스를 구하고, 가지관 및 통합 관성항으로 취급하여 수리구조물을 처리하였다. 그리고 이러한 결과를 특성선방법과 비교하여 그 적절성을 검증하였는데, 특성선 방법에 의한 모의 결과와 비교하였을 때, 일치하는 결과를 나타내었다. 임펄스응답법에 의한 모의 결과에서 감쇄효과를 과대평가하는 경향이 관찰되었다. 이는 임펄스 응답법의 가정에 기인한 것으로써 난류 상태의 흐름에서 상당한 불일치를 가져올 수 있으나, 수리 구조물에 의한 수격압이 감쇄되는 과정에서 대부분 흐름이 층류 상태로 전환된다고 가정 할 때는 상당한 적용성이 있다. 본 연구는 수리구조물이 부착된 관망의 해석함에 있어서 임펄스응답법의 적용이 가능함을 보였고, 이는 보다 복잡한 관망에서의 천이류 해석이 가능함을 시사한다.

  • PDF

Transient Analysis of Pipeline System Considering Unsteady Friction Models (다양한 부정류 마찰항을 고려한 관망 천이류 모의와 실험연구)

  • Jang, Il;Kim, Sang Hyun;Kim, Ji Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.657-664
    • /
    • 2008
  • This research compared several unsteady friction models for transient analysis of pipeline system. Unsteady friction is an important factor for accurate simulation of hydraulic transient. Steady friction, quasi-steady friction, Zielke's model and two versions of Brunone model were compared with measurement data of identical pipeline conditions. This study showed that the existing simple steady friction model can be useful for the safer design of pipeline system due to its overestimation of waterhammer, but introduction of more elaborate models are required for advanced analysis such as inverse transient analysis of friction or leakage and the preliminary analysis of water quality prediction of water distribution system.

Application of Transient and Frequency Analysis for Detecting Leakage of a Simple Pipeline (누수탐지를 위한 천이류와 주착수분석 적용 연구)

  • Kim, Hyung-Geun;Kim, Hyun-Soo;Lee, Mi-Hyun;Kim, Sang-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1065-1071
    • /
    • 2005
  • Many techniques of leak detection in pipeline systems have developed based on the propagation wave speeds and wave attenuation. In this paper, the transient analysis methodology is used for calculating the wave speed in the plastic pipe and a frequency analysis methodology is developed for leakage detection in water pipe networks. Data acquisition system for pressurized pipeline system were designed md fabricated to obtain high frequency pressure data. The methodology properly handles the unavoidable uncertainties in measurement and modeling error. Based on information from head pressure test data, it provides leak prediction capability from the transient events with leakage.

A Phytosociological Study of Natural Forest Communities at Mt. Jokye Area (조계산지역(曹溪山地域) 삼림군집(森林群集)의 식물사회학적(植物社會學的) 연구(硏究))

  • Kim, Tae Uk
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.4
    • /
    • pp.418-424
    • /
    • 1987
  • Considering the seral stage of succession, phytosocialogical analysis was carried out to investigate the structure and property of community of Pinus densiflora, Pinus densiflora-Quercus spp.-Carpinus laxiflora, and Quercus spp.-Carpinus laxiflora. The study area included a section of 200m high at the sea level in Mt. Jokye, Seungju-gun, Chunlanam-do. The results show that density of forest trees tended to be decreased, Shannon species diversity index increased, and dominance decreased as seral stage progressed. Patterns of DBH class distribution showed nearly S types. In the study area succession of forest community might progressed toward climax, leading from Pinus densiflora community to Quercus spp.-Carpinus laxiflora community with intermediary Pinus densiflora-Quercus spp.-Carpinus laxiflora community. The fact that there was no pure community of Quercus spp. might be due to the rapid development of forest community investigated.

  • PDF

Simulation of One-Dimensional Transcritical Flow with Discontinuous Galerkin Finite Element Method (불연속 갤러킨 유한요소법을 이용한 1차원 천이류 모의)

  • Lee, Haegyun;Lee, Nam-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.428-434
    • /
    • 2013
  • With the increase of the frequency in large-scale floods and natural disasters, the demands for highly accurate numerical river models are also rapidly growing. Generally, flows in rivers are modeled with previously developed and well-established numerical models based on shallow water equations. However, the so-far-developed models reveal a lot of limitations in the analysis of discontinuous flow or flow which needs accurate modeling. In this study, the numerical shallow water model based on the discontinuous Galerkin method was applied to the simulation of one-dimensional transcritical flow, including dam break flows and a flow over a hump. The favorable agreement was observed between numerical solutions and analytical solutions.