• Title/Summary/Keyword: 천연 액화 가스

Search Result 317, Processing Time 0.032 seconds

Comparative Study between Single-stage and Two-stage Expansion Using LNG Cold Heat (액화천연가스 냉열을 이용한 단일팽창과 이단팽창 사이의 비교 연구)

  • NOH, SANGGYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.188-192
    • /
    • 2019
  • Comparative studies between single- and two-stage expansion process using LNG cold heat have been performed for a closed Rankine power generation cycle. PRO/II with PROVISION release 10.0 from Schneider Electric Company was used, and the Peng-Robinson equation of state model with Twu's alpha function was selected for the modeling and optimization of the power generation cycle using LNG cold heat. In two-stage power generation cycle, 6.7% more power was obtained compared to that of single-stage power generation cycle through the optimization works.

A Study on the Price Evaluation Per 1 Ton of Liquefied Natural Gas According to the Refrigerants Supply Temperature in the Electric Refrigerator (전기식 냉동기에서 냉매의 공급온도에 따른 액화천연가스의 톤당 냉열 가격 산출에 대한 연구)

  • KIM, YONUNGWOO;PARK, ILSOO;CHO, JUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.5
    • /
    • pp.473-477
    • /
    • 2019
  • In this paper, cold heat price contained in the 1 ton/h of LNG has been evaluated using PRO/II with PROVISION release 10.2 from Aveva company when LNG is used to liquefy several refrigerants instead of using vapor recompression refrigeration cycle. Normal butane, R134a, NH3, R22, propane and propylene refrigerants were selected for the modeling of refrigeration cycle. It was concluded that LNG cold heat price was inversely proportional to the refrigerant supply temperature, even though LNG supply flow rate is not varied according to the refrigerant supply temperature.

Basic Design of Information Processing System for Development of Liquefied Natural Gas Plant Simulator (액화 천연 가스 플랜트 시뮬레이터 개발을 위한 정보 처리 시스템 기본 설계)

  • Kim, Hyoung Jean;Lee, Jae Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.919-920
    • /
    • 2009
  • 액화 천연 가스 플랜트 시뮬레이터는 막대한 자본 투자가 필요한 대형 시스템 설계 및 건설 단계에서 사전에 설계 오류 검출 및 시스템 검증을 함으로써 많은 비용을 절약해줄 수 있는 중요한 시스템이다. 이 연구에서는 플랜트, 시뮬레이터, 운전원 훈련 시스템 및 제어시스템을 운전하는 과정에서 발생하는 정보를 효과적으로 처리하기 위해서 구축되는 정보 처리 시스템의 기본 설계에 관한 내용을 소개한다. 전체 시스템은 물리적 플랜트와 가상 플랜트로 나눌 수 있고 가상 플랜트는 시뮬레이터와 운전원 훈련 시스템으로 구현되며, 제어 시스템은 PLC로 구현하고 Modubus 프로토콜과 OPC 서버를 통해 데이터 처리가 가능하다. 플랜트로부터 생성되는 데이터 처리에서는 실시간 데이터 처리 속도가 중요하므로 실시간 데이터베이스를 도입하였다. 실제 플랜트 데이터와 시뮬레이터 데이터는 상호 교환이 가능하도록 구성하였다. 본 시스템 설계는 기본 설계 단계이므로 향후 LNG 플랜트에 적용하기 위해서는 상세 설계가 필요하다.

A Study on the Efficiency Improvement of the Power Generation Process Using New Working Fluids Composed of Methane, Ethylene, Ethane, and Propane and the Cold Heat Contained in the Liquefied Natural Gas (메탄, 에틸렌, 에탄 및 프로판으로 구성된 새로운 작동 유체와 액화 천연가스의 냉열을 활용한 발전 공정의 효율 향상에 대한 연구)

  • JUNGHO CHO
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.3
    • /
    • pp.318-323
    • /
    • 2024
  • In this paper, computer modeling works have been performed for the power generation Rankine cycle using new working fluids and liquefied natural gas (LNG) cold heat. PRO/II with PROVISION released January 2023 from AVEVA company was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the power generation cycle. Optimal working fluid composition was determined to maximize LNG cold heat to increase power generation efficiency and net power production.

New reliquefaction system of Boil-Off-Gas by LNG cold energy (LNG냉열이용 BOG 재액화긍정 해석연구)

  • 윤상국;최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.256-263
    • /
    • 2002
  • The Boil-Off-Gases(BOG) in the LNG production terminal are continuously generated during the unloading, storage and supply processes by the heat penetration. In order to use these gases as useful fuel, the reliquefaction process should be installed to put the reliquefied BOG in the main LNG supply line before the secondary pump in terminal. The current reliquefaction method of BOG in LNG terminal is the direct contact one between LNG and BOG in the absorption column. But the system has severe disadvantage, which is the 10 times of LNG circulation needed for unit mass of BOG reliquefaction. It causes, therefore, high power consumption of LNG circulation pump and excessive city-gas supply, even if short demand of NG is needed in the summer time. In this paper, the new reliquefaction system of BOG by using LNG cold energy with indirect contact in precooler was suggested and analysed. The result showed new indirect contact method of BOG reliquefaction system between LNG cold energy and BOG is much more effective than the current direct contact one because of only about 1.3 times of LNG circulation needed and higher energy saving by pump power reduction.

Improvement of Gas Turbine Performance Using LNG Cold Energy (액화천연가스의 냉열을 이용한 가스터빈의 성능향상)

  • Kim, Tong Seop;Ro, Sung Tack;Lee, Woo Il;Choi, Mansoo;Kauh, Sang Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.653-660
    • /
    • 1999
  • This work describes analysis on the effect of inlet air cooling by the cold energy of liquefied natural gas(LNG) on the performance of gas turbines. Gas turbine off-design analysis program to simulate the influence of compressor inlet temperature variation is prepared and an inlet air cooler is modeled. It is shown that the degree of power augmentation is much affected by the humidity of inlet air. If the humidity is low enough, that is the water content of the air does not condense, the temperature drop amounts to $18^{\circ}C$, which corresponds to more than 12% power increase, in case of a $1350^{\circ}C$ class gas turbine with methane as the fuel. Even with 60% humidity, about 8% power increase is possible. It is found that even though the fuel contains as much as 20% ethane in addition to methane, the power improvement does not change considerably. It is observed that if the humidity is not too high, the current system is feasible oven with conceivable air pressure loss at the inlet air cooler.

Software-In-the-Loop based Power Management System Modeling & Simulation for a Liquefied Natural Gas Carrier (SIL 기반 액화천연가스운반선 전력관리시스템의 모델링 및 시뮬레이션)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1218-1224
    • /
    • 2017
  • With the increasing risk in building liquefied natural gas carriers (LNGC), pre-simulation of various scenarios is required for system integration and safe operation. In particular, the power management system (PMS) is an important part of the LNGC; it works in tight integration with the power control systems to achieve the desired performance and safety. To verify and improve unpredicted errors, we implemented a simulation model of power generation and consumption for testing PMS based on software-in-the-loop (SIL) method. To control and verify the PMS, numeric and physical simulation modeling was undertaken utilizing MATLAB/Simulink. In addition, the simulation model was verified with a load sharing test scenario for a sea trial. This simulation allows shipbuilders to participate in new value-added markets such as commissioning, installation, operation, and maintenance.

Risk Assessment Technology of LNG Plant System (액화천연가스 플랜트 시스템 위험도평가 기술)

  • Choi, Song-Chun;Ha, Je-Chang;Lee, Mee-Hae;Jo, Young-Do;Chang, Yoon-Suk;Choi, Shin-Beom;Choi, Jae-Boong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.162-170
    • /
    • 2009
  • As one of promising solutions to overcome high oil price and energy crisis, the construction market of high value-added LNG plants is spotlighted world widely. The purpose of this manuscript is to introduce domestic activities to develop risk assessment technology against overseas monopolization. After analyzing relevant specific features and their technical levels, risk assessment program, non-destructive reliability evaluation strategy and safety criteria unification class are derived as core technologies. These IT-based convergence technologies can be used for enhancement of LNG plant efficiency, in which the modular parts are related to a system with artificial optimized algorithms as well as diverse databases of facility inspection and diagnosis fields.

Effects of Opening Condition of the Fore Body on the Resistance and Self-Propulsion Performance of a Ship (일반상선의 선수 개구부가 저항 및 자항성능에 미치는 영향)

  • Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.78-85
    • /
    • 2014
  • LNG-RV has the additional equipments that enable to re-gastify liquefied LNG in LNG carrier. This vessel has Submerged Turret Loading(STL) system which transports gas through submarine terminal. When LNG-RV is operating at sea, the opening condition is formed by detaching STL equipment from a vessel. The primary objective of the current work is to estimate accurate speed loss for the opening condition of the LNG-RV employing numerical calculations and model tests. In the model tests, resistance and self-propulsion tests are carried out for the bare-hull and the opening condition without STL. In addition to these, flow visualization utilizing tuft is used to make the flow patterns visible, in order to get a qualitative or quantitative information for inner part in case of detaching the STL.

Synthesized Oil Manufacturing Technology from Natural Gas, GTL (천연가스로부터 합성유 제조 기술, GTL(Gas To Liquids))

  • Bae, Ji-Han;Lee, Won-Su;Lee, Heoung-Yeoun;Kim, Yong-Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.45-52
    • /
    • 2008
  • The GTL(Gas to Liquids) technology, manufacturing synthesized oil from natural gas, had been developed about 1920 for the military purpose by Fischer and Tropsch, German scientists. And 1960, Sasol company had started commercializing the FT(Fischer-Tropsch) synthesis technology, for the transport fuel in South Africa. Until a recent date, the commercialization of GTL technology had been delayed by low oil price. But concern about depletion of petroleum resources, and development in synthesizing technology lead to spotlight on the GTL businesses. Especially, Qatar, which has rich natural gas fields, aims at utilizing natural gas like conventional oil resources. Therefore, around this nation, GTL plants construction has been promoted. There are mainly 3 processes to make GTL products(Diesel, Naphtha, lube oil, etc) from natural gas. The first is synthesis gas generation unit reforming hydrogen and carbomonoxide from natural gas. The second is FT synthesis unit converting synthesized gas to polymeric chain-hydrocarbon. The third is product upgrading unit making oil products from the FT synthesized oil. There are quite a little sulfur, nitrogen, and aromatic compounds in GTL products. GTL product has environmental premium in discharging less harmful particles than refinery oil products from crude to the human body. In short, the GTL is a clean technology, easier transportation mean, and has higher stability comparing to LNG works.

  • PDF