• Title/Summary/Keyword: 천연 액화 가스

Search Result 317, Processing Time 0.035 seconds

Study on Adiabatic Performance of LNG Storage Tank for Vehicles (차량용 LNG연료용기의 단열성능에 관한 연구)

  • Han, Jeong-Ok;Lee, Young-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Natural gas vehicles are being applied to city buses for improving air quality in metropolitan and have proved the effective way to reduce the pollutant emissions. Liquified Natural Gas(LNG) has also attempted a vehicle fuel in order to raise the fuel storage density that is a disadvantage of Compressed Natural Gas(CNG). This paper described insulation characteristic of a LNG storage tank. From the results, adiabatic coefficient of a tested tank was around $40J/h{\cdot}^{\circ}C{\cdot}m^2$ and it was the lower level than gas safety regulation limit. Two experimental methods were adopted to justify the evaluation results and they were revealed that the results were very similar to each other. Also, through testing relief valve operation characteristic it was investigated venting amount of boiled off gas.

  • PDF

Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) over Nickel Catalyst Supported on Surfactant-templated Mesoporous Alumina (계면활성제를 이용하여 제조된 중형기공성 알루미나 담체에 담지된 니켈촉매 상에서 액화천연가스(LNG)의 수증기개질반응에 의한 수소 제조)

  • Seo, Jeong-Gil;Youn, Min-Hye;Song, In-Kyu
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • Mesoporous aluminas (A-C, A-A, and A-N) were prepared by a templating method using cationic(C), anionic(A), and non-ionic(N) surfactant as a structure-directing agent, respectively. Nickel catalysts supported on mesoporous alumina (Ni/A-C, Ni/A-A, and Ni/A-N) were then prepared by an impregnation method, and were applied to hydrogen production by steam reforming of liquefied natural gas (LNG). Regardless of surfactant type, nickel species were finely dispersed on the surface of mesoporous alumina in the calcined catalysts. It was revealed that interaction between nickel species and support in the reduced catalysts was strongly dependent on the identity of surfactant. LNG conversion and $H_2$ composition in dry gas increased in the order of Ni/A-C < Ni/A-A < Ni/A-N. It was found that catalytic performance increased with increasing nickel surface area in the reduced catalyst. Among the catalyst tested, Ni/A-N catalyst with the highest nickel surface area showed the best catalytic performance.

A Developing Tendency of Liquefied Natural Gas Carriers (액화천연가스 운반선(LNGC)의 발전 추세)

  • Lee, Dong-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.269-274
    • /
    • 2009
  • Recently, the construction of Liquefied Natural Gas Carriers(LNGC) is being promoted larger and larger depending on long voyage. In 1950 years, $5,000m^3$ class of LNGC had been changed to $71,500m^3$ class in 1973. and to $210,000-266,000m^3$ class in 2007. Especially, the system of main engines and cargo control, Re-liquefaction of natural gases have become possible in LNGC. This research deals with the LNG projects, world markets of energy and developing tendency of liquefied natural gas carriers.

  • PDF

Experimental Study on Performance Characteristics of Liquid Rocket Engine (액체로켓엔진의 성능특성 연구)

  • 장행수;이성웅;조용호;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.211-217
    • /
    • 2003
  • A liquid rocket engine(LRE) Using LO$_2$/LNG(Liquefied Natural Gas) propellants was experimentally evaluated. The purpose of this study was to investigate the performance of the LO$_2$/LNG rocket combustor that is composed of three sect ions(igniter spacer, cylinder and nozzle section), especially focused on the influence of regenerative cool ing effect in association with the phase of regenerative coolant Series of tests were conducted under the conditions of water cool ing and regenerative cool ing with LNG in the cylinder section and independent cool ing with water in the igniter spacer and nozzle sections. Parametric studies on the variation of a chamber pressure and mixture ratio were undertaken. In addition, effect of propellant(LNG) composition and its enthalpy on the performance is examined.

  • PDF

Study on the Working Characteristics of Vaporizer for Super Low Temperature Liquefied Gas (초저온 액화천연가스용 기화기의 운전특성에 관한 연구)

  • Kong, T.W.;Yi, S.B.;Lee, S.C.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.99-105
    • /
    • 2005
  • LNG Vaporizers must be smaller, more efficient, and easier to operate and maintain. Recently, the vaporizers with greatly enhanced performance as compared to conventional type, have been developed to fulfill these requirements. The vaporizing characteristic of LNG vaporizer with air as heat source has fixed ice. These characteristic has efficient down and total plant cost and installing space can be increase. On that reasons must be optimize through tube and pipes analysis and experiments with enhanced type in this study. In this study performance to the workong characteristics for air heating type vaporizer for super low temperature liquefied gas.

  • PDF

A Study on the Utilization of the LNG Cold Heat for the Reduction of the Power Consumption in Main Air Compressors in Cryogenic Air Separation (심냉 공기분리공정의 공기압축공정에서 전력비 절감을 위한 액화천연가스 냉열 활용에 대한 연구)

  • CHO, DUHEE;CHO, JUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.3
    • /
    • pp.322-327
    • /
    • 2020
  • In this work, a study for the reduction of the electric power consumption has been estimated in main air compressors in the air separation unit through cryogenic distillation columns with PRO/II with PROVISION V10.2 at AVEVA company. Both required LNG mass flow rate and cold heat contained in 1 ton of LNG were also predicted using Peng-Robinson equation of state with Twu's new alpha function. Through this work, we concluded that 32.33-48.69% of electric power could be saved by using LNG cold heat.

Estimation of the Ammonia Refrigeration Cycle Using LNG Cold Heat (액화천연가스 냉열을 활용한 암모니아 냉동 사이클의 추산)

  • NOH, SANGGYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.357-362
    • /
    • 2018
  • In this study, computer simulation and optimization works have been performed for a refrigeration cycle using ammonia as a refrigerant and also how much power was saved when the liquefied natural gas cold heat is replaced for the refrigeration cycle. PRO/II with PROVISION release 10.0 from Schneider electric company was used, and Peng-Robinson equation of the state model was selected for the modeling of the refrigeration cycle and LNG cold heat utilization process.

A Study on Performance of LNG Engine by Using 2-Zone Combustion Model (2영역 연소모델을 이용한 액화천연가스 기관의 성능에 관한 연구)

  • 한영출;오용석;조재명
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.59-65
    • /
    • 1999
  • To reduce the particulate matter and nitrogen oxides from diesel engine, many studies are proceeding and being accomplished practically. In this situation, LNG engine has important meaning as a clean fuel and alternative energy. In this reason, we try to understand the property of LNG fuel and predict the performance with using LNG engine simulation program and practical test. It could help to lead and apply practically LNG engine was studied in performance and other parameter related with engine performance and compared with current diesel engine. The simulation program was proved to be good in describing the experimental result. This means current heavy duty vehicle could be modified to LNG engine.

  • PDF

A Study on Characteristics of Direct Contact LNG Evaporator (직접접촉식 액화천연가스 기화기의 특성에 관한 연구)

  • 한승탁;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.903-911
    • /
    • 1994
  • This study addresses the phenomena of bubbling, icing, eruption, component varieties of the evaporated natural gas, and volumetric heat transfer coefficients obtained during the operation of a proposed LNG evaporator between LNG and water in direct contact. In the present investigation, the explosive and eruption phenomena within the water column were not observed during the entire operation of the heat exchanger. Compared with the natural gas produced by conventional LNG evaporator, the analysis of the gas produced by the direct contact LNG evaporator shows that nitrogen, methane, and ethane components were reduced by 0.002~0.007mol%(4~14%), 1.6~1.92mol%(1.9~2.3%) and 0.17~1.28mol%(1.1~8.4%) respectively, while the moisture content was rather increased by 0.51~0.76mol%. The maximum volumetric heat transfer coefficient of the direct contact heat exchanger was found to be $21, 800kW/m^3\cdotK$.

Analysis of high efficiency natural gas liquefaction cycle with mixed refrigerant (고효율 혼합 냉매 천연 가스 액화 공정에 대한 고찰)

  • Baek, Seung-Whan;Hwang, Gyu-Wan;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.181-185
    • /
    • 2008
  • The new concept for liquefaction of natural gas has been designed and simulated in this paper. Conventional liquefaction cycles are usually composed with Joule-Thomson valves at lower temperature refrigerant cycle. The new concept of natural gas liquefaction is discussed. The main difference with conventional liquefaction process is the presence of the turbine at low temperature of MR (mixed refrigerant) cycle. The turbine acts as expander but also as an energy generator. This generated energy is provided to the compressor which consumes energy to pressurize refrigerants. The composition of the mixed refrigerant is investigated in this study. Components of the refrigerant are methane, propane and nitrogen. Composition for new process is traced with Aspen HYSYS software. LNG heat exchangers are analyzed for the new process. Heating and cooling curves in heat exchangers were also analyzed.

  • PDF