• Title/Summary/Keyword: 천연섬유복합재료

Search Result 44, Processing Time 0.027 seconds

Influence of Carbon Fiber Direction on Mechanical Properties of Milled Carbon Fibers/Carbon Blacks/Natural Rubber Compounds (탄소섬유 방향이 미분쇄 탄소섬유/카본블랙/천연고무 복합재료의 기계적 물성에 미치는 영향)

  • Ham, Eun-Kwang;Choi, Kyeong-Eun;Ko, Jae-Kyoung;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • In this work, the influence of milled carbon fiber direction on mechanical properties of milled carbon fibers/carbon blacks/natural rubber compounds was investigated. The compounds were prepared by adding the 6 phr milled carbon fibers (MCFs) and 40 phr carbon blacks (CBs) into the natural rubber. The MCFs were aligned in a parallel and orthogonal direction in the compounds using two-roll-mill machine. Mechanical properties of compounds were studied by tensile characteristics and tearing strength. As a result, the compounds showed higher tensile strength, 100%~300% modulus, and tearing strength than those of using any other compounds due to the aligning MCFs in parallel. Mechanical properties of the compounds reinforced with non-aligned MCFs were inferior to those of others. Consequently, the parallel aligned MCFs in the compounds led to an increase of tensile properties and improvement of tearing strength, resulted from MCFs with the high elastic modulus.

Effect of Kenaf Fiber Content and Length on the Cure Characteristic, Hardness, Tensile Modulus, and Abrasion of Kenaf/Natural Rubber Composites in the Presence and Absence of Kenaf Fiber Treatment with Adhesive Solution (접착용액을 이용한 케나프섬유 처리 유·무에 따른 케나프/천연고무 복합재료의 경화특성, 경도, 인장탄성률 및 마모에 미치는 케나프섬유의 함량 및 길이의 영향)

  • Cho, Yi-Seok;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.19 no.2
    • /
    • pp.60-67
    • /
    • 2018
  • In the present study, when the surface of kenaf, which is an environmentally friendly natural fiber, was treated by using adhesive solution containing Chemlok 402, the effects of fiber surface treatment, fiber content and fiber length on the cure characteristics, hardness, tensile modulus and abrasion resistance of kenaf/natural rubber composites were investigated. The kenaf fiber contents consisting of the composites were varied with 0, 5, 10, 15, and 29 phr at a fixed fiber length of 2 mm and also the fiber length was varied with 2, 35, and 70 mm at a fixed fiber content of 5 phr. The Tmax and tc90 values, Shore A hardness, tensile modulus, and abrasion resistance of natural rubber composites strongly depended on the kenaf fiber content and length. The characteristics of the composite with kenaf fibers treated with the adhesive solution containing Chemlok 402 were higher than those untreated. This is ascribed to the improved interfacial adhesion between the treated kenaf fiber and the rubber matrix. This study suggests that an appropriate use of adhesive solution may be possible to increase the properties of natural fiber-reinforced composites.

Influence of Alkali or Silane Treatment of Waste Wool Fiber on the Mechanical Properties and Impact Strength of Waste Wool/Polypropylene Composites (폐양모/폴리프로필렌 복합재료의 기계적 특성 및 충격강도에 미치는 폐양모섬유의 알칼리처리 또는 실란처리 영향)

  • Kim, Kihyun;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.18 no.3
    • /
    • pp.118-126
    • /
    • 2017
  • In a natural fiber-reinforced composite material, many studies have been devoted to improving the interfacial adhesion between natural fiber and polymer matrix and the composite properties through various fiber surface modifications. In the present study, waste wool-reinforced polypropylene matrix composites were fabricated by compression molding and their mechanical and impact properties were characterized. As a result, the tensile and flexural properties and the impact strength of waste wool/polypropylene composites strongly depended on the treatment medium, alkali treatment with sodium hydroxide (NaOH) and silane treatment with 3-glycidylpropylsilane(GPS). The composite with waste wool by silane treatment exhibited higher mechanical properties and impact resistance than that by alkali treatment. The fracture surfaces of the composites support qualitatively the increased properties, showing the improved interfacial bonding between the waste wool and the polypropylene matrix.

A Study on Fire Resistance of Abaca/Vinyl-ester Composites (마닐라 삼/비닐에스터 복합재료의 내화성 연구)

  • Lee, Dong-Woo;Park, Byung-Jin;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Eco-convivial composites with improved properties are essential to present polymer scenario and can be made easily by replacing partially/completely renewable materials either matrix or reinforcement along with few % of additives. In these investigations, Abaca fabric have been used as reinforcement for manufacturing of Vinyl ester composites through VARTM technique and study the effect of alkali surface treatment of abaca fabric and flame retardant additives i.e., ammonium polyphosphate (APP) with halloysite nano-clay (HNT) on mechanical and flame retardant properties. The results concluded that, surface treatment deceased the hydrophilic nature of fabric and enhanced the interfacial bonding with hydrophobic matrix and eventually increased mechanical properties slightly of developed composites. Similarly, the flame retardancy of the composites improved significantly and increases the burning time by varying the wt% of filler concentration.

Study on the Mechanism of Mechanical Property Enhancement in Carbon Fiber/Flax Fiber Hybrid Composite Materials (탄소섬유/아마섬유 하이브리드 복합재료의 기계적 물성 향상 기구에 관한 연구)

  • Jamil Abuzar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2023
  • Environmental pollution from waste and the climate crisis, due to rising global average temperatures, are reaching critical levels threatening human survival. Research is ongoing across various fields to solve this problem, with a key focus on developing eco-friendly, carbon-neutral materials. Our study aimed to integrate natural fibers, known for their environmentally friendly properties and lower carbon emissions, with carbon fibers. In general, combining high-strength and low-strength materials results in intermediate properties. However, we found that certain properties in our study exceeded those of typical carbon fiber composite materials. To validate this, we produced both carbon fiber composite materials and carbon fiber/natural fiber hybrid composite materials. We then compared their mechanical properties using a range of specific tests. Our results revealed that the hybrid composite material exhibited superior bending strength and fracture toughness compared to the carbon fiber composite material. We also identified the underlying mechanisms contributing to this strength enhancement. This breakthrough suggests that the use of hybrid composite materials may allow the production of stronger structures. Moreover, this can play a significant role in mitigating environmental pollution and the climate crisis by reducing carbon emissions, a major contributing factor to these global challenges.

A Study on Flame Retardant Treatment on Bamboo Nonwoven Fabric and Manufacturing of Sandwich Structure Composites (대나무 섬유의 난연화 및 샌드위치 구조 복합재료 제조연구)

  • Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.408-414
    • /
    • 2020
  • The present engineering sector focused on the sandwich composites and almost covered all engineering fields because of decent mechanical properties with a lightweight structure. It mainly consists of high strength fiber skin and porous structure core like corrugated, honeycomb, balsa wood, and foams which is playing a pivotal role in weight reduction. Recently researchers attention grabbed by Natural fiber sandwich composites due to biodegradability, renewable, low-cost, and environmentally friendly. However special focus is highly needed towards the flammability behavior of natural fibers used as reinforcement for composites. Herein, for the first time, the flame retardant natural fiber sandwich composite was fabricated by using flame retardant treated bamboo fabric and vinyl ester via the VARTM process. The impact of flame retardant treated bamboo fabric on mechanical and flame retardant properties were studied. The results concluded that the fabricated bamboo sandwich composites show structurally lightweight with significant mechanical strength and feasibility with respect to the flame.

Rheological Properties During Mixing and Thermal Properties of Polypropylene/Natural Fiber Composites: II. Effects of A Compatibilizer (폴리프로필렌-천연섬유 복합재료의 혼합시 유변학적 및 열적 특성: II. 상용화제의 영향)

  • Kim, Sam-Jung;Yoo, Chong Sun;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • We investigated effects of a compatibilizer on the rheological properties during mixing and thermal properties of polypropylene (PP)-natural fiber composites. Two types of natural fibers (cotton fiber and wood fiber) were compared. maleic anhydride grafted PP was used for a compatibilizer. On increasing the amounts of the compatibilizer, the torque values of composites were increased, regardless of the kind of fibers. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results showed a slight increase in the degree of crystallinity with adding the compaibilizing agent, while the effects of the kind of fibers were marginal. It may be considered, however, the cotton fiber exhibits better interaction with PP-g-MAH than the natural fiber based on the rheographs, DSC, and XRD results.

  • PDF

견 피브로인/카이토산 복합체 섬유의 제조 및 특성화 (I)

  • 박근후;류동일;초상연;신윤숙;박원호
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.45-48
    • /
    • 1998
  • 카이토산(chitosan)은 항미생물성, 무독성, 인체적합성 및 양이온성 등의 특성을 지니며 항균, 방취, 보습, 생체적합성 및 생분해성 등의 다양한 기능을 나타내고 있는데, 이를 바탕으로 카이토산을 단독 또는 다른 천연섬유재료와 복합화시키는 연구가 행해지고 있다. 본 연구에서 선택한 카이토산과 복합체를 형성할 수 있는 성분인 견 피브로인(silk fibroin)은 17 종의 아미노산으로 이루어진 단백질로서 의류용 및 의료용 재료로서 이용되고 있는 고급섬유재료이다. (중략)

  • PDF

Structural Test Analysis Study for Manufacturing of Flax Fiber Composite Blades for 30kW Wind Turbines (30kW 풍력터빈용 아마섬유 복합재 블레이드 제조를 위한 구조 시험 분석 연구)

  • Hye-Jin Shin;Ji-Hyun Lee;Sung-Young Moon;Jounghwan Lee
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.32-36
    • /
    • 2023
  • Recently, as global environmental issues for sustainable development, such as carbon neutrality, have emerged, disposal methods of glass fiber composites, a material of existing wind turbines, have become a problem. To solve this problem, in this study, 30kW wind turbine blades were manufactured using flax fiber-based composites, which are eco-friendly natural fiber composites that can replace existing glass fiber composites, and their suitability was evaluated. First, mechanical strength tests were conducted to verify the feasibility of using eco-friendly natural flax fiber composites as a wind turbine blade material, and as a result, better strength were confirmed compared to previous studies on the properties of flax fiber composites. In addition, the suitability was confirmed through a static strength performance evaluation test to measure the static strength of the flax fiber composite blade using the manufactured 30kW class flax fiber composite blade.