• Title/Summary/Keyword: 천문

Search Result 9,237, Processing Time 0.042 seconds

Performance Evaluation of Mid-IR Spectrometers by Using a Mid-IR Tunable Optical Parametric Oscillator (중적외선 광 파라메트릭 발진기를 이용한 중적외선 분광기 성능 평가)

  • Nam, Hee Jin;Kim, Seung Kwan;Bae, In-Ho;Choi, Young-Jun;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.4
    • /
    • pp.154-158
    • /
    • 2019
  • We have used a mid-IR (mid-infrared) continuous-wave (cw) optical parametric oscillator (OPO), developed previously and described in Ref. 12, to build a performance-evaluation setup for a mid-IR spectrometer. The used CW OPO had a wavelength tuning range of $ 2.5-3.6{\mu}m$ using a pump laser with a wavelength of 1064 nm and a fan-out MgO-doped periodically poled lithium niobate (MgO:PPLN) nonlinear crystal in a concentric cavity design. The OPO was combined with a near-IR integrating sphere and a Fourier-transform IR optical spectrum analyzer to build a performance-evaluation setup for mid-IR spectrometers. We applied this performance-evaluation setup to evaluating a mid-IR spectrometer developed domestically, and demonstrated the capability of evaluating the performance, such as spectral resolution, signal-to-noise ratio, spectral stray light, and so on, based on this setup.

Climatic Changes and Geographical Characteristics of Solar Term Temperatures in the Korean Peninsula (한반도 절기 기온의 기후적 변화와 지리적 특성)

  • PARK, Sun-Yurp;LEE, Su-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.65-81
    • /
    • 2019
  • The twenty-four Solar Terms are Chinese traditional astronomical divisions that describe seasonal cycles of the year. Based on the analyses of meteorological data during 1979~2018, study results showed that the temperatures of the Solar Terms had increased in general in the Korean Peninsula. In North Korea, temperature increases were observed on 21 Solar Terms, and their seasonal mean temperatures were increased by $0.87^{\circ}C$, $1.19^{\circ}C$, $1.45^{\circ}C$, and $0.64^{\circ}C$ on average in spring, summer, fall, and winter, respectively. The duration of summer has lengthened due to the temperature rise in fall, and the magnitude of temperature change was greater in summer compared to winter. As for South Korea, increases in temperature were observed on 18 Solar Terms, and the temperature changes were more pronounced in fall and winter than spring and summer. The Great Snow temperature decreased more than any other Solar Terms during the study period, and this temperature change was observed both in North and South Koreas. The Great Cold, which represents the coldest day of the year, showed a significant temperature increase of $3.08^{\circ}C$, while the Slight Heat had a marginal temperature increase of $0.29^{\circ}C$. The hottest day and the first day of frost tended to come later than the Great Heat and the Frost's Decent. By contrast, the coldest day tended to occur later than the Great Cold in the study area. On average over the entire study period, the climatic fitness of the Great Heat and the Frost's Decent was higher in North Korea, and that of the Great Cold was higher in South Korea, respectively.

An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust Behavior for Lunar Surface Environment Simulation (달 지상환경 모사를 위한 지반 진공화 및 달먼지 거동에 대한 실험적 연구)

  • Chung, Taeil;Ahn, Hosang;Yoo, Yongho;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.327-333
    • /
    • 2019
  • For sustainable lunar exploration, the most required resources should be procured on site because it takes tremendous cost to transfer the resources from the Earth to the Moon. The technologies required for use of lunar resources refers to In-Situ Resource Utilization (ISRU). As the ISRU technology cannot be verified in the Earth, a lunar surface environment simulator is necessary to be prepared in advance. The Moon has no atmosphere, and the average temperature of the lunar surface reaches to $107^{\circ}C$ during the daytime and $-153^{\circ}C$ at night. The lunar surface is also covered with very fine soils with sharp particles that are electrostatically charged by solar radiation and solar wind. In this research, generation of vacuum environment with lunar soil mass in a chamber and simulation of electrostatically charged soils are taken into consideration. It was successful to make a vacuum environment of a chamber including lunar soils without soil disturbance by controlling evacuation rate of a vacuum chamber. And an experiment procedure for simulating the charged lunar soil was suggested by theoretical consideration in charging phenomena on lunar dust.

Polarimetry of solar system small bodies using the Seoul National University 61cm telescope and TRIPOL

  • Jin, Sunho;Ishiguro, Masateru;Kwon, Yuna Grace;Geem, Jooyeon;Bach, Yoonsoo P.;Seo, Jinguk;Sasago, Hiroshi;Sato, Shuji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2019
  • It is known that lights scattered by comets and asteroids are partially polarized. From polarimetric observations of those objects, we can investigate physical properties, such as albedos, sizes of cometary dust particles and regolith of asteroids. Since the polarization degrees of those objects highly depend on their phase angles (Sun-object-observer's angles), long-term monitoring observations are required. Moreover, comets show unforeseeable activations (i.e., outbursts) which need follow-up observations to understand the mechanism. In order to realize such monitoring and transient observations, we installed the Triple-Range Imager and POLarimeter (TRIPOL) on the 61cm telescope of Seoul National University (Hereafter, SNU) Gwanak campus. With this combination, we can obtain g', r', i' bands photopolarimetric images simultaneously with $8.0^{\prime}{\times}8.0^{\prime}$ field of view and pixel resolution of 0.94" pixel-1. Here, we make a presentation regarding the photometric and polarimetric performances of TRIPOL on the SNU 61cm telescope. In addition, we introduce initial polarimetric results of asteroid and comets with the instruments. First, we determine the limiting magnitudes (defined as magnitudes for S/N=5) of $15.17{\pm}0.06$ (g'-band), $15.68{\pm}0.01$ (r'-band), $16.24{\pm}0.03$ (I'-band), respectively, with total 240-seconds exposure (four 60-seconds exposure images, each was taken at different rotation angle for the half-wave plate). Second, we found that the instrumental polarization is negligibly small, ($-0.32{\pm}0.04%$ in the g', $-0.36{\pm}0.05%$ in the r' and $-0.21{\pm}0.04%$ in the i'-bands), while the polarization efficiencies are large enough to maximize the performance (i.e., $97.52{\pm}0.03%$ in the g', $98.83{\pm}0.02%$ in the r' and $99.15{\pm}0.02%$ in the i'-bands). With the instruments, we made observations of three Jupiter-family comets, 21P/Giacobini-Zinner, 38P/Stephan-Oterma, and 46P/Wirtanen and plan to observe one near-Earth asteroid, (433) Eros, on a trial basis. Especially for comets, we discriminate signals from dust and gas to eliminate gas contamination, which are known to change observed degree of linear polarization, using multi-band images. We confirm that the phase angle dependency of these comets are consistent with previous observations, probably because polarimetric property of Jupiter-family comets are broadly homogeneous unlike asteroids. We will also describe future observation plans using TRIPOL and SNU 61cm telescope.

  • PDF

Search for Faint Quasars at z~5 using Medium-band Observations

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Hyun, Minhee;Jeon, Yiseul;Ji, Tae-Geun;Byeon, Seoyeon;Park, Woojin;Ahn, Hojae;Taak, Yoon Chan;Kim, Sophia;lim, Gu;Hwang, Sungyong;Paek, Insu;Paek, Gregory;Kim, Minjin;Kim, Dohyeong;Kim, Jae-Woo;Yoon, Yongmin;Choi, Changsu;Hong, Jueun;Jun, Hyunsung David;Karouzos, Marios;Kim, Duho;Kim, Ji Hoon;Lee, Seong-Kook;Pak, Soojong;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.36.2-36.2
    • /
    • 2018
  • Cosmic reionization era in the early universe was playing a leading part on making the present universe we know. However, we have not been able to reveal the main contributor to the cosmic reionization to date. Faint quasars have been mentioned as the alternative due to the uncertainty of the faint end slope of the quasars luminosity function. With the availability of the deep (~25mag) images from Subaru Hyper Suprime-Cam (HSC) Strategic Program survey, we have tried to find more quasar with low luminosity in the ELAIS-N1 field. Faint quasar candidates were selected from several multi-band color cut criteria based on the track of the simulated quasar at z ~ 5. The Infrared Medium-deep Survey (IMS) and The UKIRT Infrared Deep Sky Survey (UKIDSS) - Deep Extragalactic Survey (DXS) provide J band information which is used to cover the relatively long wavelength range of quasar spectra. To search the reliable candidates with possible Lyman break, medium-band observation was performed by the SED camera for QUasars in EArly uNiverse(SQUEAN) in the McDonald observatory and Seoul National University 4k Camera(SNUCAM) in the Maidanak observatory. Photometric redshifts of the observed candidates were estimated from chi-square minimization. Also, we predicted the importance of the faint quasar to the cosmic reionization from the expected number density of the faint quasar.

  • PDF

CHEMICAL PROPERTIES OF CORES IN DIFFERENT ENVIRONMENTS; THE ORION A, B AND λ ORIONIS CLOUDS

  • Yi, Hee-Weon;Lee, Jeong-Eun;Liu, Tie;Kim, Kee-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2019
  • We observed 80 dense cores ($N(H_2)$ > $10^{22}cm^{-2}$) in the Orion molecular cloud complex which contains the Orion A (39 cores), B (26 cores), and ${\lambda}$ Orionis (15 cores) clouds. We investigate the behavior of the different molecular tracers and look for chemical variations of cores in the three clouds in order to systematically investigate the effects of stellar feedback. The most commonly detected molecular lines (with the detection rates higher than 50%) are $N_2H^+$, $HCO^+$, $H^{13}CO^+$, $C_2H$, HCN, and $H_2CO$. The detection rates of dense gas tracers, $N_2H^+$, $HCO^+$, $H^{13}CO^+$, and $C_2H$ show the lowest values in the ${\lambda}$ Orionis cloud. We find differences in the D/H ratio of $H_2CO$ and the $N_2H^+/HCO^+$ abundance ratios among the three clouds. Eight starless cores in the Orion A and B clouds exhibit high deuterium fractionations, larger than 0.10, while in the ${\lambda}$ Orionis cloud, no cores reveal the high ratio. These chemical properties could support that cores in the ${\lambda}$ Orionis cloud are affected by the photo-dissociation and external heating from the nearby H II region. An unexpected trend was found in the $[N_2H^+]/[HCO^+]$ ratio with a higher median value in the ${\lambda}$ Orionis cloud than in the Orion A/B clouds than; typically, the $[N_2H^+]/[HCO^+]$ ratio is lower in higher temperatures and lower column densities. This could be explained by a longer timescale in the prestellar stage in the ${\lambda}$ Orionis cloud, resulting in more abundant nitrogen-bearing molecules. In addition to these chemical differences, the kinematical difference was also found among the three clouds; the blue excess, which is an infall signature found in optically thick line profiles, is 0 in the ${\lambda}$ Orionis cloud while it is 0.11 and 0.16 in the Orion A and B clouds, respectively. This result could be another evidence of the negative feedback of active current star formation to the next generation of star formation.

  • PDF

Infrared Spectro-Photomeric Survey Missions: NISS & SPHEREx

  • Jeong, Woong-Seob;Yang, Yujin;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Minjin;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Park, Young-Sik;Jo, Youngsoo;Kim, Il-Joong;Ko, Jongwan;Seo, Hyun Jong;Ko, Kyeongyeon;Kim, Seongjae;Hwang, Hoseong;Song, Yong-Seon;Lee, Jeong-Eun;Im, Myungshin;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2019
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 was successfully launched on last December and is now under the operation phase. The capability of both imaging and spectroscopy is a unique function of the NISS. It has realized the imaging spectroscopy (R~20) with a wide field of view of $2{\times}2deg$. in a wide near-infrared range from 0.95 to $2.5{\mu}m$. The major scientific mission is to study the cosmic star formation history in the local and distant universe. It also demonstrated the space technologies related to the infrared spectro-photometry in space. The NISS is performing the imaging spectroscopic survey for local star-forming galaxies, clusters of galaxies, star-forming regions, ecliptic deep fields and so on. As an extension of the NISS, the SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) was selected as the NASA MIDEX (Medium-class Explorer) mission (PI Institute: Caltech). As an international partner, KASI will participate in the development and the science for SPHEREx. It will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. Compared to the NISS, the SPHEREx is designed to have a much wider FoV of $3.5{\times}11.3deg$. as well as wider spectral range from 0.75 to $5.0{\mu}m$. Here, we introduce the status of the two space missions.

  • PDF

A Study on the 3D Reconstruction and Historical Evidence of Recumbent Buddha Based on Fusion of UAS, CRP and Terrestrial LiDAR (UAS, CRP 및 지상 LiDAR 융합기반 와형석조여래불의 3차원 재현과 고증 연구)

  • Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.111-124
    • /
    • 2021
  • Recently, Interest in the restoration and 3D reconstruction of cultural properties due to the fire of Notre Dame Cathedral on April 15, 2019 has been focused once again after the 2008 Sungnyemun fire incident in South Korea. In particular, research to restore and reconstruct the actual measurement of cultural properties using LiDAR(Light Detection and ranging) and conventional surveying, which were previously used, using various 3D reconstruction technologies, is being actively conducted. This study acquires data using unmanned aerial imagery of UAV(Unmanned Aerial Vehicle), which has recently established itself as a core technology in the era of the 4th industrial revolution, and the existing CRP(Closed Range Photogrammetry) and terrestrial LiDAR scanning for the Recumbent Buddha of Unju Temple. Then, the 3D reconstruction was performed with three fusion models based on SfM(Structure-from-Motion), and the reproducibility and accuracy of the models were compared and analyzed. In addition, using the best fusion model among the three models, the relationship with the Polar Star(Polaris) was confirmed based on the real world coordinates of the Recumbent Buddha, which contains the astronomical history of Buddhism in the early 11th century Goryeo Dynasty. Through this study, not only the simple external 3D reconstruction of cultural properties, but also the method of reconstructing the historical evidence according to the type and shape of the cultural properties was sought by confirming the historical evidence of the cultural properties in terms of spatial information.

SOMANGNET: SMALL TELESCOPE NETWORK OF KOREA

  • Im, Myungshin;Kim, Yonggi;Lee, Chung-Uk;Lee, Hee-Won;Pak, Soojong;Shim, Hyunjin;Sung, Hyun-Il;Kang, Wonseok;Kim, Taewoo;Heo, Jeong-Eun;Hinse, Tobias C.;Ishiguro, Masateru;Lim, Gu;Ly, Cuc T.K.;Paek, Gregory S.H.;Seo, Jinguk;Yoon, Joh-na;Woo, Jong-Hak;Ahn, Hojae;Cho, Hojin;Choi, Changsu;Han, Jimin;Hwang, Sungyong;Ji, Tae-Geun;Lee, Seong-Kook J.;Lee, Sumin;Lee, Sunwoo;Kim, Changgon;Kim, Dohoon;Kim, Joonho;Kim, Sophia;Jeong, Mankeun;Park, Bomi;Paek, Insu;Kim, Dohyeong;Park, Changbom
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.3
    • /
    • pp.89-102
    • /
    • 2021
  • Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4-1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scientific scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.

Propagation of tidal wave and resulted tidal asymmetry upward tidal rivers (감조하천에서 조석 전파 및 조석비대칭)

  • Kang, Ju Whan;Cho, Hong-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.433-442
    • /
    • 2021
  • In order to examine the characteristics of tidal wave from the estuary to upsteam of tidal river, tidal asymmetry was identified based on analysis of the harmonic constants of M2 and M4 tidal constituents in the domestic western coastal regions. As shallow water tide is greatly developed in the estuary, flood dominance in Han River and Keum River, and ebb dominance in Youngsan River are developed. These tidal asymmetries can be reconfirmed by analyzing the tidal current data. Unlike having reciprocating tidal current patterns in Keum and Youngsan estuaries, rotaing tidal current pattern is shown in the Han River estuary due to the complex topography and waterways around Ganghwa Island area. However, when residual current is removed, flood dominance is shown in consistency with the tide data. The tidal asymmetry in the estuary tends to intensify with the growth in shallow water tide as the tidal wave propagates to upstream of tidal river. Energy dissipation, in shallow Han River and Keum River classified as SD estuaries, is very large regarding bottom friction characteristics. On the other hand, the deep Youngsan River, classified as a WD estuary, shows less energy dissipation.