• 제목/요약/키워드: 천리안 위성

검색결과 196건 처리시간 0.018초

기온의 일 변동을 고려한 COMS 지표면온도 산출 알고리즘 개선 (Improvement of COMS land surface temperature retrieval algorithm by considering diurnal variation of air temperature)

  • 최윤영;서명석
    • 대한원격탐사학회지
    • /
    • 제32권5호
    • /
    • pp.435-452
    • /
    • 2016
  • 천리안(Communication, Ocean, and Meteorological Satellite) 위성자료로부터 Cho et al.(2015)에 의해 개발된 분리대기창법(split-window method: CSW_v2.0)을 적용하여 현업적으로 지표면온도를 산출하고 있다. CSW_v2.0으로부터 산출된 지표면온도는 MODIS 지표면온도와 비교하였을 때 적절한 수준의 정확도로 산출되었으나 역전층이나 기온감률이 클 때 상대적으로 오차가 크게 발생하였다. 이를 해결하기 위해 지표 경계층에서의 기온의 일변동을 복사전달모델에 처방하여 모의자료를 구축한 후 이를 이용하여 지표면온도 산출 알고리즘을 개선하였다(CSW_v3.0). CSW_v3.0에서는 복사전달모델에 처방된 지표면온도와 복사전달모델로부터 산출된 지표면온도간의 상관계수가 기존 알고리즘과 동일한 수준인 0.99 이상을 유지하면서 편의는 -0.03 K에서 -0.012 K, RMSE는 1.39 K에서 1.138 K로 감소하였다. CSW_v2.0에서 역전층이나 기온감률이 클 때, 휘도온도차와 방출율 차가 클 때 발생하는 계통적 오차를 개선된 알고리즘에서는 편의와 RMSE를 10-30% 감소시켜 상당 부분 개선하였다. CSW_v3.0으로부터 산출된 지표면온도와 MODIS 지표면온도와의 간접 검증에서는 상관계수가 0.986에서 0.985로 높은 상관성을 유지하면서 편의는 0.629 K에서 -0.049 K, RMSE는 2.537 K에서 2.502 K로 오차를 감소시켰다.

GOCI-II 자외선 채널을 활용한 흡수성 에어로졸 관측 (Exploiting GOCI-II UV Channel to Observe Absorbing Aerosols)

  • 이서영;김준;안재현;임현광;조예슬
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1697-1707
    • /
    • 2021
  • 2020년 2월 19일 천리안 2B호의 해양 탑재체 GOCI-II가 발사되었다. GOCI-II 기기는 이전의 GOCI 대비 여러 향상된 기능을 탑재함으로써, 에어로졸 산출 연구의 범위를 확장해주었다. 특히, 새롭게 추가된 380 nm 자외선 채널은 흡수성 에어로졸 관측의 민감도를 유의미하게 향상시키는 역할을 하였다. 본 연구에서는, GOCI-II의 380 및 412 nm 채널을 활용하여 2021년 1월부터 6월까지의 에어로졸 지수를 계산하고 이를 통해 흡수성 에어로졸을 탐지하였다. TROPOMI 에어로졸 지수와 비교한 결과 GOCI-II 에어로졸 지수는 양의 편차를 보였으나, 황사 화소에서의 에어로졸 지수는 구름 및 청천 화소와 뚜렷하게 구분할 수 있을 만큼 더 크게 나타났다. 또한 GOCI-II 에어로졸 지수가 크게 나타날 때, 지상 관측 장비에서도 흡수성 에어로졸이 우세하게 탐지되었음을 발견하였다. GOCI-II 에어로졸 지수 상위 25% 범위에 드는 자료들을 조사하자, 연구 기간 동안 지상에서 Dust 및 Moderately-absorbing fine 유형으로 확인된 자료들의 71.3%, 80.0%가 각각 여기에 속함을 확인할 수 있었다.

광역적 이동 연무 탐지를 위한 지상 질량 농도를 고려한 적외채널 밝기온도차 경계값 범위 분석 (An Analysis of the Range of Brightness Temperature Differences Associated with Ground Based Mass Concentrations for Detecting the Large-scale Transport of Haze)

  • 김학성;정용승;조재희
    • 한국지구과학회지
    • /
    • 제37권7호
    • /
    • pp.434-447
    • /
    • 2016
  • 2011-2015년 동안 한국 중부 태안과 청주 강내의 배경 관측지점에서 측정한 PM10, PM2.5 질량 농도를 분석하였다. 황사 사례를 제외한 PM10 질량 농도의 계절변동에서 겨울-봄 동안 높은 농도는 서풍 기류에 의한 영향이 반영되고 있으며, 여름에는 북태평양 기단과 잦은 강수로 낮은 수준을 보이고 있었다. 따라서, 일평균 PM10 질량 농도 $81{\mu}gm^{-3}$ (미세먼지 예보 '약간 나쁨' 이상) 이상의 사례도 겨울-봄 동안에 발생이 많으며, 특히 중국 동부 배출원에 가까운 태안에서 더 많은 사례가 발생하고 있었다. 인위적으로 발생한 연무는 입경 $2.5{\mu}m$ 미만 입자의 구성 비율이 높다. 천리안 위성의 밝기온도차 분석에서 대기와 입자가 작은 연무는 $-0.5^{\circ}K$ 이상에서 관측된다. 2011-2015년 동안 태안과 청주 강내에서 관측한 연무 사례일의 PM10 질량 농도와 NOAA 19 위성 밝기온도차를 분석하였다. PM10 질량 농도는 $200{\mu}g\;m^{-3}$ 보다 낮지만, PM2.5/PM10 질량 농도비는 0.4보다 높고 밝기온도차는 $-0.3-0.5^{\circ}K$ 범위에 분포하고 있었다. 그러나, PM10 질량 농도 $190{\mu}g\;m^{-3}$ 이상인 황사 사례의 밝기온도차는 PM2.5/PM10 질량 농도비가 0.4보다 낮고, 밝기온도차는 $-0.7^{\circ}K$ 이하의 범위에 분포하고 있었다. 이러한 연무의 밝기온도차 경계값 범위를 적용한 결과는 MODIS AOD, OMI AI의 에어로졸 분포 범위와 일치하였다.

GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석 (Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD)

  • 김상민;윤종민;문경정;김덕래;구자호;최명제;김광년;이윤곤
    • 대한원격탐사학회지
    • /
    • 제34권3호
    • /
    • pp.451-463
    • /
    • 2018
  • 본 연구는 서울지역에서 2015년 1월부터 12월까지 정지궤도 천리안 위성(Communication Ocean and Meteorological Satellite, COMS) 해양 탑재체(Geostationary Ocean Color Imager, GOCI)의 에어로졸광학두께(Aerosol Optical Depth, AOD)로부터 지상 초미세먼지(Particulate Matter; $PM_{2.5}$) 농도를 추정하기 위한 계절별 경험/통계모델을 개발했다. 행성경계층고도(Planetary Boundary Layer Height, PBLH) 그리고 에어로졸 수직 비율(Vertical Ratio of Aerosol, VRA)을 사용한 두 가지 수직보정방법과 흡습성장계수(Hygroscopic growth factor, f(RH))로부터의 습도보정방법이 각각의 경험적 모델에 적용된 결과 AOD에 대한 수직 보정과 $PM_{2.5}$에 대한 지표 습도보정이 모델 성능 향상에 중요한 역할을 했다. AOD-$PM_{2.5}$ 사이에 관련이 있다고 알려진 기상인자들(온도, 풍속, 시정)을 추가적으로 사용하여 다중 선형 회귀모델을 구성한 결과 경험모델에 비해 $R^2$값이 최대 0.25 증가했다. 본 연구에선 AOD-$PM_{2.5}$ 모델의 계절별, 월별, 시간별 특성을 분석하고 계절별로 구분하여 모델을 구성한 결과 고농도 사례에서 과소평가 되던 경향이 개선됨을 알 수 있고 관측된 $PM_{2.5}$와 추정된 $PM_{2.5}$의 월 및 시간변동성은 서로 경향성이 일치했다. 따라서 정지궤도 위성 AOD를 이용하여 지상 $PM_{2.5}$ 농도를 추정한 본 연구의 결과는 향후 발사 예정인 GK-2A와 GK-2B에 적용 가능할 것으로 기대된다.

정지궤도 천리안위성 해양관측센서 GOCI의 Tasseled Cap 변환계수 산출연구 (A Study of Tasseled Cap Transformation Coefficient for the Geostationary Ocean Color Imager (GOCI))

  • 신지선;박욱;원중선
    • 대한원격탐사학회지
    • /
    • 제30권2호
    • /
    • pp.275-292
    • /
    • 2014
  • 이 연구에서는 Geostationary Ocean Color Imager(GOCI) 센서에 적용할 수 있는 고유의 Tasseled Cap Transformation(TCT) 계수를 제시하고 있다. TCT는 다중밴드 센서 자료로부터 지표의 특성을 분석하는 전통적인 영상변환 방법 중 하나로 새로운 다중밴드 광학센서가 관측을 시작하는 경우 센서의 특성 차이로 인하여 각각의 육상관측 위성센서에 적합한 TCT 계수들이 장기 분석을 통하여 수립되어야 한다. GOCI 센서는 해양관측이 주 목적으로 개발되었으나 영상의 상당 부분은 육지를 관측하고 있으며 밴드 구성은 육지관측에도 일반적으로 이용되는 Visible-Near InfraRed(VNIR) 영역의 정보를 포함하고 있다. 또한 GOCI 센서의 높은 시간 해상도는 지표의 일별 변화의 관측에도 유용하게 사용될 수 있다. 이러한 장점을 이용하여 GOCI 센서에 대한 고유한 TCT가 제공된다면 GOCI 센서의 관측범위 내에서 준 실시간으로 지표변화에 대한 분석과 해석이 가능할 것이다. TCT는 일반적으로 "Brightness", "Greenness", "Wetness"의 세 가지 정보를 포함하지만, ShortWave InfraRed(SWIR) 파장대역이 없는 GOCI 센서의 경우에는 "Wetness"의 정보를 얻을 수 없다. GOCI 센서의 높은 시간 해상도의 활용을 극대화하기 위해서는 "Wetness"의 정보가 제공되어야 한다. "Wetness"의 정보를 얻기 위해 GOCI 주성분 분석(Principal Component Analysis: PCA) 공간을 MODIS TCT 공간에 선형 회귀하는 방법이 사용되었다. 이 연구에서 산출된 GOCI TCT 계수는 정지궤도의 특성에 의해 관측 시간대별로 다른 변환계수를 가질 수 있다. 이 차이를 알아보기 위하여 GOCI TCT 자료와 MODIS TCT 자료 사이의 상관관계가 비교되었다. 그 결과, "Brightness"와 "Greenness"는 4시 자료, "Wetness"는 2시 자료의 변환계수가 선택되었다. 최종적으로 산출된 변환계수의 적절성을 평가하기 위하여 GOCI TCT 자료는 MODIS TCT 영상 및 여러 육상 파라미터들과 비교되었다. GOCI TCT 영상은 MODIS TCT 영상보다 지표 피복의 분류가 더 세밀하게 표현되었으며, GOCI TCT 공간의 지표 피복 분포도 유의미한 결과를 보여줬다. 또한 GOCI TCT의 "Brightness", "Greenness", "Wetness" 자료는 Albedo($R^2$ = 0.75), Normalized Difference Vegetation Index(NDVI) ($R^2$ = 0.97), Normalized Difference Moisture Index(NDMI) ($R^2$ = 0.77)와 각각 비교적 높은 상관관계가 나타났다. 이러한 결과들은 적절한 TCT 계수의 산출이 이루어졌다는 것을 보여준다.

최근(2018-2020) 태풍의 이동속도와 한반도 주변의 총가강수량 변화 (The Moving Speed of Typhoons of Recent Years (2018-2020) and Changes in Total Precipitable Water Vapor Around the Korean Peninsula)

  • 김효정;김다빈;정옥진;문윤섭
    • 한국지구과학회지
    • /
    • 제42권3호
    • /
    • pp.264-277
    • /
    • 2021
  • 본 연구의 목적은 최근 발생한 태풍들의 이동속도와 관련하여 대기 중 총가강수량의 변화를 분석하는 것이다. 이 연구를 위해 미국기상위성연구소 및 기상청 천리안위성 2A호(GEO-KOMPSAT-2A)의 총가강수량 및 주야간 RGB 합성영상 자료뿐만 아니라 기상청의 기온, 강수량 및 풍속 등의 지상 관측 자료가 사용되었다. 기상청에서 제공하는 태풍 위치 및 이동속도를 활용하여, 2020년 태풍 바비, 마이삭, 하이선과 2019년 태풍 타파, 그리고 2018년 태풍 콩레이의 이동속도를 위도별 태풍 평균속도 통계자료와 비교하였다. 그 결과, 타파와 콩레이는 태풍의 위도별 평균속도와 유사하게 나타났으나 바비와 마이삭은 위도 약 25°N-30°N 구간에서 이동속도가 크게 감소하여 나타났다. 이는 대기 중의 수증기 띠가 전선의 형태로 바비와 마이삭 두 태풍의 전방에 위치하여 이들 태풍의 이동에 방해를 주었기 때문이었다. 즉 이동하는 태풍의 전방에 하층제트로 인해 발생한 수증기 띠가 전선을 형성할 경우, 이 전선과 태풍 사이에 위치하는 고기압 역은 더욱 발달하면서 열대야와 함께 블로킹 효과로 작용하여 태풍의 이동속도가 느리게 나타났다. 결과적으로 대기 중의 수증기가 많았던 바비와 마이삭의 경우, 1차로 하층제트를 따라 수증기 띠가 전선을 형성함으로 인한 집중호우가, 2차로 전선과 태풍 사이에 고기압 역의 하강기류로 인한 열대야 현상이, 그리고 3차로 태풍 자체의 육지 상륙에 의한 강풍과 폭우가 연달아 발생하였다.