• Title/Summary/Keyword: 천공 홀

Search Result 27, Processing Time 0.024 seconds

Tensile Strength of Plate with Bolt Hole and Bearing Strength of Bolted Connection by Oxygen Torch Cut (볼트홀을 산소토치로 천공한 강재의 인장강도 및 지압이음강도)

  • Park, Yong Myung;Lee, Kun Joon;Kim, Dong Hyun;Ju, Ho Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.617-626
    • /
    • 2014
  • In this paper, experiments for the evaluation of tensile strength of steel plate with bolt hole and bearing strength of bolted connection were performed, where bolt holes were punched by drilling and oxygen torch, respectively. For the tensile tests, drilled and oxygen torch punched steel plate specimens of 10mm and 15mm thickness were made from structural angles and H-shapes, respectively. For the bearing strength evaluation, test specimens were fabricated with base plates and splice plates those were also punched by drilling and oxygen torch, respectively. The Vicker's hardness were measured around the bolt hole to investigate material property change due to heat effect by oxygen torch cut. Numerical analysis was also performed to investigate the bearing strength of bolted joints due to the increase of hardness around the bolt hole by oxygen torch cut.

Effective Arrangement of Non-explosive Demolition Agents and Empty Holes for Improving Fragmentation of Square Concrete Structures (정사각형 콘크리트 구조물의 파쇄도 향상을 위한 비폭성 파쇄제와 천공 홀의 효과적인 배치)

  • Cho, Hwangki;Nam, Yunmin;Kim, Kyeongjin;Lee, Jaeha;Sohn, Dongwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.145-151
    • /
    • 2017
  • As an alternative to conventional explosive methods for demolition of concrete structures and rocks, the use of non-explosive demolition agents can be considered to reduce noise, vibration, and dust emissions during the demolition process. In this study, we conduct finite element analysis for crack initiation and propagation caused by the expansion of non-explosive demolition agents in square concrete structures. The predicted crack patterns are compared with the experimental results in the literature. The minimum values of the required expansion pressure of non-explosive demolition agents are also estimated, which depend upon the arrangement of non-explosive demolition agents and empty holes. Furthermore, we investigate the effect of empty holes on the fragmentation of concrete structures, and discuss the effective arrangement of non-explosive demolition agents and empty holes for fragmentation improvement.

Taper phenomenon of UV-laser punching process on zero-shrinkage substrate (무수축 기판 상에 UV 레이저 가공에 의한 Taper 현상)

  • Ahn, Ik-Jun;Yeo, Dong-Hun;Shin, Hyo-Soon;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.285-289
    • /
    • 2015
  • With the miniaturization with both high functionality and high integrity of the probe cards, the highly precise laser punching on the zero-shrinkage high strength substrate has attracted more attention recently. Taper occurrence during laser-punching on green sheets appears as a problem in process. The size (diameter) difference between the entrance hole and the exit hole in tapered holes appeared to be inversely proportional to the hole size itself. To suppress taper occurrence, two-stage punching was adopted as the size of second hole was varied from $70{\mu}m$ to $79{\mu}m$ when punching $80{\mu}m$ via holes on the substrate with thickness of $380{\mu}m$. The minimal taper ratio of 11.9 % appeared with second hole size between 70 to $79{\mu}m$ before sintering. Taper ratio reduced to 7 % after zero-shrinkage sintering. The size difference between first hole and second hole appeared minimal when the size of second hole was 95~97 % to that of first hole.

Perforation Adjustment of Unit Package for 'Fuji' Apples during Short-term Cold Storage and Export Simulation ('후지' 사과의 단기 저온저장 및 모의수출 과정에서 소포장의 천공도 조절 효과)

  • Kim, Su-Jeong;Park, Youn-Moon;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.184-192
    • /
    • 2014
  • Various types of unit packaging methods were applied for 'Fuji' apples during short-term cold storage and export simulation. Gas tightness of the package was controlled stepwise in the successive two-year experiments using different perforation treatments (none, punch hole, or pinhole) and sealing methods (tie v s. heat seal). Risk of tight packaging and effectiveness of macroperforation on weight loss and quality maintenance were analyzed as related to changes in gas concentration inside the packages. Immediately after harvest, each 5 apple units were packaged in $40{\mu}m$ polypropylene (PP) film bags, stored 4 weeks at $0^{\circ}C$, and then put on the shelf for one week at ambient temperature in the preliminary experiment, In the main experiment, export process was imposed after storage simulating 2 week refrigerated container shipment at $0^{\circ}C$ plus one week local marketing at ambient temperature. Non-perforated film packaging with relatively high gas tightness induced flesh browning caused by carbon dioxide accumulation regardless of the sealing methods. Among perforated film packaging, in contrast, atmospheric modification was partly established only in the pinhole treatment and flesh browning symptom was not observed in all the treatments. Even the punch hole perforated film packaging without gas tightness effectively reduced the weight loss, whereas had slight benefits for quality maintenance. Reduced perforation using pinhole treatment seemed to improve sensory texture, while effects on physicochemical quality were insignificant. Overall results suggest the need of more minute perforation treatments on the packaging film to ensure modified atmosphere effects on quality maintenance.

New tunnel reinforcement method using pressurized cavity expansion concept (천공홀 가압 팽창 개념을 도입한 터널 보조 신공법 연구)

  • Cho, In-Sung;Park, Jeong-Jun;Kim, Jong-Sun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.407-416
    • /
    • 2010
  • A new tunnel auxiliary method is proposed in this paper which utilizes the concept of cavity expansion for tuunel reinforcement by forming an umbrella arch on the roof of tunnel. When an inflatable pipe is inserted and expanded by pressure in the bore hole of umbrella arch, the ground around the bore hole can be compacted so that the stress condition above the tunnel perimeter is favorably changed. In order to verify the reinforcement effect of new concept, pilot-scale chamber test, trapdoor test and numerical analysis were performed and compared. In pilot-scale chamber test, three types of inflatable pipes are tested to verify the capability of expansion, and the results arc compared with analytical results obtained by applying cavity expansion theory and with results obtained from finite clement analysis, and the experimental results showed agreeable matches with analytical and numerical ones. Numerical analysis of a tunnel and trapdoor test applied with the inflatable pipes are also performed to figure out the reinforcement effect of the proposed techniques, and the results implied that the new method with 3 directional inflatable pipe (no pressure to downward direction) can contribute to reduce tunnel convergence and face settlement.

Evaluation of Design Parameters of Grouting Nail (그라우팅 네일을 이용한 사면보강공법의 설계인자 추출 연구)

  • 황영철;김낙영;석정우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10b
    • /
    • pp.44-58
    • /
    • 2001
  • FRP(Fiberglass Reinforced Plastic)관을 이용한 사면보강은 천공 후 그라우트재에 압력을 가하여 그라우트재의 천공홀 충전뿐만 아니라 지반으로의 침투주입 효과를 일으켜, 전체적인 보강력 증대를 기대하는 공법이다. 이런 특성을 설계에 반영하기 위해서는 구조재료인 FRP관 자체에 의한 지반보강효과 뿐만 아니라 그라우팅에 따른 지반강도의 증진효과를 정량적으로 평가하는 것이 선행되어야 하나 아직까지는 이에 대한 연구가 부족한 실정이다. 따라서 대상지반을 토사와 암반사면으로 구분하여 각각의 보강효과를 확인하고자 현장시험 및 수치해석을 실시하였으며, 이로부터 지반종류에 따른 보강특성과 합리적인 설계를 위한 설계인자를 추출하고자 하였다.

  • PDF

Arrangement of Agent Holes for Enhancing Crack Propagation in Structure Demolition Process using Soundless Chemical Demolition Agents (무소음화학팽창제를 이용한 구조물 해체시 균열진전 촉진을 위한 천공홀의 배치)

  • Nam, Yunmin;Kim, Kyeongjin;Park, Sanghyun;Sohn, Dongwoo;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.683-690
    • /
    • 2015
  • For demolition of offshore facilities, traditional methods such as jackhammer and explosive methods have been often used in construction industry. However, prohibitions for use of those methods are becoming more rigorous especially in environmentally and historically sensitive areas. It was also reported that the explosive demolition method on maritime bedrock can cause a disturbance of ecosystem. For those reasons, use of soundless chemical demolition agent(SCDA) is getting the spotlight. However, researches regarding the mechanical point of SCDA have seldom performed. There is no industrial standard for use of SCDA yet. In this study, a pilot experimental study in order to measure the required expansive pressure that could be generated from SCDA was conducted. Numerical models were developed in order to estimate the required expansive pressures of SCDA for initiating cracks depending on selected key parameters. Obtained results indicate that the required pressure does not decrease linearly as increasing the hole diameter, the number of holes, and the ratio of hole-distance to hole-diameter.

A Study on Flexural Behavior of Composite PHC pile with CT Structural Steel (PHC파일과 CT형강을 합성한 합성형 벽체파일의 휨거동에 대한 연구)

  • Mha, Ho-Seong;Won, Jeong-Hun;Cho, Hyo-Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.233-243
    • /
    • 2012
  • This study verifies the structural capacity of the composite PHC pile (Pretensioned spun high-strength concrete) consisting of a PHC pile and two CT structural steels. Four full-scale specimens are fabricated and the experimental tests were performed to investigate the flexural behaviors of the composite PHC piles. The composite PHC pile can enhance both the structural capacity and functional convenience, since the web of CT structural steel with holes in the web acts as a shear connector (referred to as the perfobond rib), which can connect concrete and steel. All specimens exhibited flexural failure and the ultimate strengths were larger than the anticipated design strength according to the design standard. Thus, the composite PHC pile can be applicable to wall structures with sufficient strength. In addition, it seems that the web of the CT structural steel with holes performs its role as shear connectors.

Numerical Analyses on the Behavioral Characteristics of Side of Drilled Shafts in Rocks and Suggestion of Design Charts (수치해석을 통한 암반에 근입된 현장타설말뚝의 주면부 거동특성 분석 및 설계차트 제시)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.407-419
    • /
    • 2006
  • Situations where support is provided solely in shaft resistance of drilled shafts are where the base of the drilled hole cannot be cleaned so that it is uncertain that any end bearing support will be developed. Alternatively, where sound bed rock underlies low strength overburden material, it may be possible to achieve the required support in end bearing on the rock only, and assume that no support is developed in the overburden. However, where the drilled shaft is drilled some depth into sound rock, a combination of side wall resistance and end bearing can be assumed. Both theoretical and field studies of the performance of rock socketed drilled shafts show that the major portion of applied load is usually carried in side wall resistance. Normal stress at the rock-concrete interface is induced by two mechanisms. First, application of a compressive load on the top of the pile results in elastic dilation of the concrete, and second, shear displacement at the rough surface of the drilled hole results in mechanical dilation of the interface. If the stiffness of the material surrounding the socket with respect to normal displacement is constant, then the normal stress will increase with increasing applied load, and there will be a corresponding increase in the shear strength. In this study, the numerical analyses are carried out to investigate the behavioral characteristics of side of rock socketed drilled shafts. The cause of non-linear head load-settlement relationship and failure mechanism at side are also investigated properly and the design charts are suggested and verified for the leading to greater efficiency and reliability in the pile design.