• Title/Summary/Keyword: 처짐 형상

Search Result 122, Processing Time 0.023 seconds

A Damage Assessment Technique for Bridges Using Static Displacements (정적변위를 이용한 교량의 손상도 평가기법)

  • Choi, Il Yoon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.641-646
    • /
    • 2002
  • A new damage detection technique using static displacement data was developed, in order to assess the structural integrity of bridge structures. In conventional damage assessment techniques using dynamic response, the variation of natural frequencies is intrinsically insensitive to the damage of the bridge: thus, it is usually difficult to obtain them from the measured data. The proposed detection method enables the estimation of the stiffness reduction of bridges using the static displacement data that are measured periodically, without requiring a specific loading test. Devices such as a laser displacement sensor can be used to measure static displacement data due to the dead load of the bridge structure. In this study, structural damage was represented by the reduction in the elastic modulus of the element. The damage factor of the element was introduced to estimate the stiffness reduction of the bridge under consideration. Likewise, the proposed algorithm was verified using various numerical simulations and compared with other damage detection methods. The effects of noise and number of damaged elements on damage detection were also investigated. Results showed that the proposed algorithm efficiently detects damage on the bridge.

Derivation of predicting regression equations of bonding thickness and deflection of glass edge considering the interaction effects between the parameters (공정변수간의 교호작용을 고려한 모서리 접합두께 및 처짐량 예측 회귀식 도출)

  • Kim, Youngshin;Jeon, Euysik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.511-516
    • /
    • 2013
  • The thickness and deflection of melting parts of the glass edge reach the biggest effect on the intensity and thermal insulation performance. During the sealing process using a hydrogen mixed gas torch, the thickness and the deflection effect of the edge part are affected by process parameters. In order to analyze the correlative relationship of the thickness prediction and the deflection of the edge part according to the process parameters, data was obtained by conducting sealing experiments. The main effects and interaction effects of process parameters for the thickness and the shape of the glass edge parts were analyzed through the design of experiment. A mathematical experiment equation that can predict the thickness and deflection of the edge part according to the process parameters was developed by conducting multiple regression equations.

Gravitational deflection analysis for the shielded slot plate with many tiny structures (미세 구조물이 성형된 쉴드슬롯판의 자중 처짐 해석)

  • Lee S.W.;Shim U.T.;Lee K.S.;Woo D.U.;Kim J.H.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.291-297
    • /
    • 2006
  • In this study, the equivalent physical properties of the shielded slot plate having a lot of very tiny bridge shape structures on its plane were determined by tensile tests and structural analyses. With those results, numerical analyses for the deflection profile by gravity effect were carried out to compare with experimental results. The two results were shown coincident very well so that the estimated equivalent physical properties were verified enough for further studies such as curvature reduction for the shielded slot plate.

  • PDF

Theoretical Evaluation of the Post Tensioning Effect in Continuous Slabs (연속 슬래브의 포스트 텐셔닝 보강에 대한 이론적 분석)

  • Kim, Chang-Hyuk;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.105-116
    • /
    • 2009
  • Reinforced concrete (RC) structures have been most widely used because of their good economic efficiency. However, it is very weak in tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. On the other hand, it is generally known that prestressed concrete structures can be the most effective to overcome the demerits of RC structures by using various tendon lay-out and its amount. In the prestressed concrete members, the inflection points of tendons should be placed effectively for the deflection control and the moment reduction. Therefore, in this study, the equations of tendon profiles are derived in terms of polynomials that satisfy essential conditions of tendon geometries such as inflection points and natural curved shapes of tendons placed in continuous members, from which vertical components of prestressing forces can be also calculated. The derived high order polynomial expression for the distributed shape of the upward and downward forces was transformed to an simplified equivalent uniform vertical force in order to improve the applicability in the calculation of member deflection. The influences of vertical forces by tendons to deflection and moment in a continuous slab were also considered depending on the distance from column face to the location of tendons. The applicability of the proposed method was examined by an example of deflection calculation for the cases of slabs with and without tendons, and the efficiency of deflection control by tendons was also quantitatively estimated.

A Development of a Simulation System for Compensating Tool Deflections of a Ball-end Milling (볼 앤드밀 가공에서의 공구 처짐 보정을 위한 시뮬레이션 시스템 개발)

  • 박홍석;유재학;이재종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.206-210
    • /
    • 2000
  • 금형 및 자동차 산업에 널리 사용되는 앤드밀 가공에서 종종 소비자가 요구하는 가공 정밀도를 충족시켜 주지 못하는 경우가 발생한다. 이것은 열 변형, 공구 마모, 공작 기계 자체의 오차, 공구 처짐 등 다양한 원인이 존재한다. 본 연구에서는 공구 처짐으로 발생되는 가공 오차를 줄임으로써 가공 정밀도를 향상하기 위한 시스템을 개발하고자 한다. 이를 위해 3차원 볼 앤드밀의 절삭력 모델을 개발하고 시뮬레이션한다. 또한, 상용 CAD 시스템의 형상 및 가공 정보를 이용함으로써 모델링에서부터 가공 경로 생성, 그리고 경로 보정이라는 과정을 일괄적으로 수행할 수 있도록 한다. 이를 통해 사용자는 가공 전 시뮬레이션을 통해 가공 오차를 줄일 수 있는 기회를 제공 받는다. 따라서, 실제 가공에서 보다 높은 가공 정밀도를 얻을 수 있을 것이다.

  • PDF

A Study on Buckling Behavior of Shallow Circular Arches (낮은 원호아치의 좌굴거동에 대한 연구)

  • 김연태;허택녕;오순택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.87-94
    • /
    • 1998
  • Behavioral characteristics of shallow circular arches with dynamic loading and different end conditions are analysed. Geometric nonlinearity is modelled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion, and the Newmark method is adopted in the approximation of time integration. The behavior of arches is analysed using the buckling criterion and non-dimensional time, load and shape parameters which Humphreys suggested. But a new deflection-ratio formula including the effect of horizontal displacement plus vertical displacement is presented to apply for the non-symmetric buckling problems. Through the model analysis, it's confirmed that fix-ended arches have higher buckling stability than hinge-ended arches, and arches with the same shape parameter have the same deflection ratio at the same time parameter when loaded with the same parametric load.

  • PDF

Displacement Measurement of Structure using Regression Analysis from Coordinates Information of Laser Scanning (레이저 스캐닝 좌표정보로부터 회기분석 기법을 이용한 구조물의 변위 계측)

  • Hong, Jeong-Beom;Lee, Hong-Min;Park, Hyo-Seon
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.34.1-34.1
    • /
    • 2010
  • TLS(Terrestrial Laser Scanning)는 레이저를 이용하여 물체의 3차원 위치 정보를 원격으로 획득할 수 있는 시스템이다. 그러나 TLS로부터 획득한 3차원 위치 정보는 처짐 또는 응력 평가 등에 있어서 구조 정보로서 사용하기에는 한계가 있다. 따라서 정밀한 형상정보의 획득을 위해서는 3차원 형상 좌표 정보에 대한 적절한 데이터 처리가 필요하다. 본 연구에서는 구조물에 작용하는 하중 또는 지점 조건에 대한 정보 없이 회기분석의 중첩을 이용하여 TLS로부터 얻은 대상물의 이산화 된 위치 정보로 부터 구조물의 정밀한 변형 형상을 추정할 수 있는 방법을 제시한다.

  • PDF

Practical Determination Method of Initial Cable Forces in Cable-Stayed Bridges (사장교 시스템의 실용적인 초기형상 결정법)

  • Song, Yo-Han;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.87-95
    • /
    • 2011
  • A rational method for determination of initial cable forces in cable-stayed bridges without complicated nonlinear analysis is presented. Initial shape analysis for cable-stayed bridges should be able to find optimizated initial cable forces and unstrained length that minimize deflection and vending moments of the deck and pylon. A presented method utilizing the idea of force equilibrium organizes initial shape analysis for each types of cable-stayed bridges. The results of that analysis were compared to several existing methods for 2D numerical examples. And for 3D actual bridges, the improved TCUD method was performed to demonstrate the accuracy of this study.

A Study on Application of GPS for Deflection Management of Curved PCT Girder Bridge under Construction (시공 중 곡선형 PCT 거더교의 처짐 관리를 위한 GPS 적용 연구)

  • Kyu Dal, Lee;Jin Duk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.453-461
    • /
    • 2015
  • In order to manage the deflection of a curved PCT girder bridge during construction, a GPS receiver was installed at the spot predicted to be the weak point during the incremental launching so as to measure the deflection at each construction stage. The deflections obtained in the experiment were compared with those derived from the monitoring of stress, temperature and inclination. The comparative analysis of the GPS measurement and analytical values obtained from finite element modeling with respect to the launching distance showed that the measured values differ by 0.6 to 1.6 times to the analytical results. This difference could be significantly reduced by thermal calibration. From the analysis of the behavioral pattern of the bridge, deflection occurred during construction in the concrete tip due to the deflection at the head of the nose at the 95m and 75m-spots, and compression and tension developed respectively at the compression weak zone and tension weak zone. The application of GPS appeared to enable more efficient management of the deflection during the erection of the curved PCT girder bridge and is expected to be helpful for the prediction and management of the behavior in future ILM construction sites.

Numerical Approach to Optimize Piercing Punch and Die Shape in Hub Clutch Product (허브클러치 제품의 피어싱 펀치 및 금형 형상 최적화를 위한 수치접근법)

  • Gu, Bon-Joon;Hong, Seok-Moo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.517-524
    • /
    • 2019
  • The overdrive hub clutch is attached to a 6-speed automatic transmission to reduce fuel consumption by using the additional power of the engine. This paper proposes a means to minimize the load and roll-over ratio on the punch during the piercing process for the overdrive hub clutch product. Die clearance, shear angle, and friction coefficient, which can affect the load and roll-over ratio of the punch during processing, were set as the design variables. Sensitivity analysis was also conducted to determine the influence of each design variable on the punch load and roll-over ratio. As a result, shear angle, friction coefficient and die clearance were found to be sensitive to load and roll-over ratio. The punch load and roll-over ratio were set as the objective function and the equation of each design variable and objective function was derives using the Response Surface Method. Finally, the optimal value of the design variables was derived using the Response Surface Method. Application of this model to finite element analysis resulted in 22.14% improvement in the roll-over ratio of the punch load and material.