• Title/Summary/Keyword: 처짐 모델

Search Result 131, Processing Time 0.022 seconds

Prediction of Cutting Force in Ball-end mill Cutting using the Commercial Solid Modeler (상용 Solid Modeler를 이용한 볼 엔드밀 가공의 절삭력 예측)

  • ;;;H. S. Park
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.347-350
    • /
    • 2003
  • Many researches on the prediction of cutting forces of ball-end mil is have been achieved since before several decades ago. These kinds of researches have been concentrated on the study on how to make the prediction equations for the cutting forces based on 2-D cutting experimentation. The results of them were really good and impressive. But it's not proper to practical uses for industrial fields, because if sculptured surface were to be machined, then it would be very difficult to understand the complicated kinematical interaction between the sculptured surface and the flutes of a ball-end mill. So, we propose the method for solving these kind of problems using existed commercial CAD/CAM software; Unigraphics. Furthermore, the modification of tool path which is done off line is offered to increase the precision of cutting.

  • PDF

Adaptive Three-Point Bending Controller Through Real-Time Springback Estimation for Beams (실시간 스프링백 예측을 통한 보의 3점굽힘 적응제어기 설계)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.62-68
    • /
    • 2000
  • In order to automate straightening process of deflected beams an adaptive three-point bending controller is studies which estimates and controls springback of beams under three-point bending. An analytical load-deflection model for three-point bending of beams with circular cross sections is derived nondimensionally. In spite of variation of material and process parameters this model can be applied to springback estimation by measuring real-time values of reactive load and deflection of the beam. A hydraulic punch stroke controller is designed to take real-time controls of the permanent deflection of the beam. The validity of the proposed system is verified through experiments.

  • PDF

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

기계 진동을 받는 구조물의 동적 해석 모델링 기법

  • 송영훈
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.58-69
    • /
    • 1998
  • 본 기사에서는 진동을 유발하는 기계장치의 지지 형태에 따른 해석 모델링 기법을 소개하는데 중점을 두었다. 다양한 해석 모델등 중 어느 것을 사용할 것인가는 주어진 조건이나 정보, 요구되는 정확도, 효율성 등을 고려하여 설계 엔지니어가 판단하여야 한다. 또한 진동 하중을 받는 구조물에 대한 설계 및 해석을 하기 위해서는 기계장치에 대한 사양 및 요구사항, 지반의 물리적 성질, 외부 환경적 요인 등을 파악하여야 한다. 종합적인 판단하에 구조물을 모델링하여 얻어진 결과들을 가지고 실제 설계 요구 조건과 비교, 검토를 하여야 하며, 이러한 설계 조건들은 다음과 같은 사항들을 포함한다. 1) 지반이나 구조물의 파괴, 과도한 처짐 등에 대한 정적 강도를 검토한다. 2) 진동 응답에 대한 최대 변위, 최대 속도, 최대 가속도를 검토한다. 3) 최대 확대계수, 최대 동적하중 계수, 공명조건, 최대 전달계수 등을 포함한 동적 거동을 검토한다. 4) 실제 구조물에서 일어날 수 있는 모든 모드들에 대한 검토를 한다. 5) 기계, 구조물, 연결부 등에 대한 파괴 가능성을 고려한다. 6) 사람이나 기계장치의 작동 등에 대한 환경적 요구조건의 만족 여부를 검토한다.

  • PDF

Reliability Analysis Model for Deflection Limit State of Deteriorated Steel Girder Bridges (처짐한계상태함수를 이용한 노후 강거더 교량의 신뢰성해석 모델 구축)

  • Eom, Jun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • The paper investigates the limit state of deflection for short and medium span steel girder bridges. Deflection depends on stiffness of steel girders and integrity of the reinforced concrete slab (composite action). Load and resistance parameters are treated as random variables. A probabilistic model is developed for prediction of the deflection. The structural performance can be affected by deterioration of components, in particular corrosion of steel girders. In addition, the creep of concrete can greatly influence the deflection of composite structures. Therefore, the statistical models for creep and corrosion of structural steel are incorporated in the model. Structures designed according to the AASHTO LRFD Code are considered. Load and resistance models are developed to account for time-variability of the parameters. Monte Carlo simulations are used to estimate the deflections and probabilities of serviceability failure. Different span lengths and girder spacing are considered for structures designed as moment-controlled and deflection-controlled. A summary of obtained results is presented.

A Study on Structural Test and Derivation of Standard Finite Element Model for Composite Vehicle Structures of Automated People Mover (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 검증에 의한 유한요소 모델 도출 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Dae-Hwan
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • The vehicle structure of Automated People Mover(APM) made of aluminum honeycomb sandwich with WR580INF4000 glass-fabric epoxy laminate facesheets was evaluated by structural test and finite element analysis. The test of the vehicle structure was conducted according to JIS E 7105. The structural integrity of vehicle structure was evaluated by stress, deflection and natural frequency obtained from dial-gauge and acceleration sensor. And the proposed finite element models were compared with the results of structural test. The results of finite element analysis showed good agreement with those of structural test. Also, in order to improve the stiffness of vehicle structure, the modified underframe model with reinforced side sill was proposed in design stage. The composite vehicle structures with modified underframe model had the improved structural stiffness about 44%.

Resonance Characteristics of a Arch Bridge for High-Speed Railways (고속철도 아치교량의 공진특성)

  • Nam, Deok Woo;Choi, Hong Kil;Kim, Kyoung Nam;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.455-467
    • /
    • 2008
  • The dynamic vehicle running tests were performed to analyze dynamic behavioral characteristics such as displacement, strain history loop and vibration acceleration in arch bridges. Also, the validity of the modeling was verified by comparing the results of the tests and those of the structural analysis modeling. With the resonance revision of verified modeling, when the ratio of excited frequencies to natural frequencies exceeds ${1{\pm}0.04}$, the stability of the bridge is obtained. Also, in the event of resonance by speed parameter, the second mode shape is dominant to the dynamic behaviors of arch bridges. It is found that manipulating the parameters involving arch ribs can increase the second mode natural frequency. It makes critical velocity greater than operational velocities to guarantee the stability of arch bridges.

Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load (전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링)

  • Kim, Jun Soo;Kim, Seong Jong;Lee, Hyuk;Ha, Sung Kyu;Lee, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1547-1557
    • /
    • 2013
  • A forced vibration model of a rail system was established using the Timoshenko beam theory to determine the dynamic response of a rail under time-varying load considering the damping effect and stiffness of the elastic foundation. By using a Fourier series and a numerical method, the critical velocity and dynamic response of the rail were obtained. The forced vibration model was verified by using FEM and Euler beam theory. The permanent deformation of the rail was predicted based on the forced vibration model. The permanent deformation and wear were observed through the experiment. Parametric studies were then conducted to investigate the effect of five design factors, i.e., rail cross-section shape, rail material density, rail material stiffness, containment stiffness, and damping coefficient between rail and containment, on four performance indices of the rail, i.e., critical velocity, maximum deflection, maximum longitudinal stress, and maximum shear stress.

Long-Term Behavior of CFT Column under Central Axial Load (중심축 하중을 받는 CFT 기둥의 장기거동에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2001
  • Concrete filled steel tubular (CFT) columns are becoming popular in structural applications. The increased popularity comes from their excellent structural properties such as high strength, high ductility, and large energy absorption capacity. However, the disadvantage feature of CFT column is the difficulty in predicting its time dependant characteristic (i.e., creep and shrinkage) of inner concrete. The time dependent behavior of CFT column can cause serious serviceability problems. Therefore, it is necessary to investigate the long term behavior of CFT column. This paper presents analytical and experimental studies on long-term behavior of CFT-column under a central axial loading. Two loading cases are considered in the research; (1) the load applied only at the inner core concrete of CFT-column and (2) the load applied simultaneously on both concrete and steel tube. Analysis method using the bond strength model is proposed and conclusions on long-term properties of CFT-column can be derived from the results.

Plate Bending Finite Element Model Using Higher-order Inplane Displacement Profile (면방향(面方向) 고차변위(高次變位)를 고려(考慮)한 평판(平板) 유한요소(有限要素)모델)

  • Shin, Hyun Mook;Shin, Young Shik;Kim, Hyeong Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.65-73
    • /
    • 1987
  • An efficient plate bending finite element has been developed using higher-order inplane displacement profiles of the plate. The 6-noded, 21-d.o.f. triangular element including shear deformation effect has been derived from the plate-like continuum by the Galerkin's weighted residual method. Square plate examples were tested with selected element meshes and several aspect ratios for their static behavior under uniformly distributed load. The result of the example tests indicated consistently good performance of the present higher-order plate bending element in comparison with the thin and thick plate solution and other existing finite element solutions.

  • PDF