• Title/Summary/Keyword: 처짐식

Search Result 152, Processing Time 0.025 seconds

Reliability Assessment of Concrete Beams Reinforced with GFRP Bars (FRP 보강근을 사용한 콘크리트 보의 신뢰성 해석)

  • Nam, Ho-Yun;Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.185-188
    • /
    • 2008
  • Fiber reinforced polymer(FRP) bars are proving to be a valuable solution in the corrosion problem of steel reinforced concrete structures. As such, a number of guidelines for their use have been developed. These guidelines are primarily based on modifications to existing codes of practice for steel reinforced concrete structures. These guidelines are also similar in that though the design equations are presented in the partial factor formats that are often used in probability based design, they are not true probabilistic codes. Instead, they typically make use of already existing design factors for loads and resistances. Thus, when concrete structures reinforced FRP bars are designed, the structural reliability levels are not known. This paper investigates uncertainties of concrete beams reinforced with GFRP bars. Also, the structural reliability levels are evaluated for the flexural failure mode.

  • PDF

Behavior of PSC Composite Bridge with Precast Decks (프리캐스트 바닥판 PSC 합성거더 교량의 거동)

  • Chung, Chul Hun;Hyun, Byung Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.873-880
    • /
    • 2006
  • PSC composite bridge with precast decks which was designed by the proposed horizontal shear equation was fabricated. Fatigue test was performed to evaluate the endurance of shear connection and the behavior of PSC composite bridge. After all the fatigue loading were applied, no crack and no residual slip were occurred. The flexural stiffness of PSC composite bridge was maintained the initial value, and demage of shear connection was not occurred. To verify the applicability of horizontal shear equation and shear connection detail and to evaluate the strength of PSC composite bridges, static test was also executed. PSC composite bridges with precast decks had 2.08 safety factor which was the ratio of crack to serviceability load and showed ductile behavior after ultimate load. Test results showed that the proposed design equation of the shear connection gave reasonable horizontal shear connection design. Fast and easy construction would be achieved using the suggested precast system.

Behaviour of One-Way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars (FRP 보강근을 주근으로 사용한 일방향 콘크리트 슬래브의 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.763-771
    • /
    • 2007
  • Over the last few decades, many researches have been conducted in order to find solution to the problem of corrosion in steel reinforced concrete. As a result, methods such as the use of stainless steel bars, epoxy coatings, and concrete additives, etc., have been tried. While effective in some situations, such remedies may still be unable to completely eliminate the problems of steel corrosion. Fiber reinforced polymer (FRP) elements are appealing as reinforcement due to some material properties such as high tensile strength, low density, and noncorrosive. However, due to the generally lower modulus of elasticity of FRP in comparison with the steel and the linear behavior of FRP, certain aspects of the structural behavior of RC members reinforced with FRP may be substantially different from similar elements reinforced with steel reinforcement. This paper presents the flexural behavior of one-way concrete slabs reinforced with FRP bars. They were simply supported and tested in the laboratory under static loading conditions to investigate their crack pattern and width, deflections, strains and mode of failure. The experimental results shows that behavior of the FRP reinforced slabs was bilinearly elastic until failure. Also, the results show that the FRP overreinforced concrete beams in this study can be safe for design in terms of deformability.

Flexural-Shear Behavior of Beam Members according to the Spacing of Stirrups and Tension Steel Ratio (스터럽간격과 인장철근비에 따른 고강도 콘크리트 보의 파괴거동)

  • Park, Hoon-Gyu;An, Young-Ki;Jang, Il-Young;Choi, Goh-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.513-521
    • /
    • 2003
  • Existing tests results have shown that confining the concrete compression region with closed stirrups improves the ductility and load-carrying capacity of beams. However, only few researchers have attempted to utilize the beneficial effects of the presence of these stirrups in design. This paper presents the result of experimental studies on the load-deflection behavior and the strengthening effect of laterally confined structural high-strength concrete beam members in which confinement stirrups have been introduced into the compression regions. Fifteen tests were conducted on full-scale beam specimens having concrete compressive strength of 41 MPa and 61 MPa. Different spacing of stirrups(0.25∼1.0d) and amount of tension steel($0.55{\sim}0.7{\rho}_b$) as major variables were investigated. And also, this study present an appropriate shear equation for decision of ultimate failure modes of high-strength concrete beams according to stirrup spacing. The equation is based on interaction between shear strength and displacement ductility. Prediction of failure mode from presented method and comparison with test results are also presenteded

Nonlinear Moment-Curvature Relations and Numerical Structural Analysis of High-Strength PSC Flexural Members (고강도 PSC 휨부재의 비선형 모멘트-곡률 관계와 전산구조해석)

  • 연정흠;이제일
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • A methods to calculate non-linear moment-curvature relations of high-strength PSC flexural members for numerical analysis has been proposed. The moment-curvature relations were calculated with assumptions of design codes and by the layer method. The results of the proposed procedures for moment-curvature relations and numerical analysis were compared with those of pre-existing tests. The absorption energy rate of the design codes was about 30% larger than that of the layer method. The ultimate load and the external work of the layer method were 90% and 85% of those of tests, respectively The ultimate load of the strength design method was 97% of that of tests, but the external work was over-estimated with 122%. The ultimate load and external work by the proposed equation of the CEB-FIP Model Code were 113% and 173% of those of tests, respectively. It show that the use of ultimate strain of 0.0035 should be over-estimated for high-strength concrete. The procedure of non-linear numerical analysis of this research could be stably simulated the behavior of concrete flexural members until the ultimate state, and calculate results of the load-deflection relation and cracking pattern were very similar with those of tests.

Evaluation of Structural Behavior and Moment of Inertia on Modular Slabs Subjected to Cyclic Loading (반복하중을 받는 모듈러 슬래브의 거동 및 단면2차모멘트 평가)

  • Park, Jongho;Choi, Jinwoong;Lee, Hong-Myung;Park, Sun-Kyu;Hong, Sungnam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.95-102
    • /
    • 2015
  • Recently, the maintenance activity for aging of bridge structures was difficult because of traffic jam, environment pollution and increasing cost. And to solve these problems, modular bridge research has been studied. After static and cyclic loading test was conducted for serviceability and bending performance with one way slab, effective moment of inertia of modular specimen was analyzed to estimate the deflection by KCI(2012). To conduct the test, one integral slab and three modular slabs were made for static loading and one integral and modular slab were made for cyclic. As a result of the test, the modular slab had the similar bending performance of the integral. But the ultimate deflection showed the insufficient which was smaller than 20%. In the cyclic loading test, the modular slab has different behavior of deflection with the integral, so it was evaluated difficult for serviceability. In addition, effective moment of inertia by KCI(2012) was not estimated for modular slab with connection. The new value of m which was ratio between moments is 4.53 based on result of test for predicting deflection of modular.

Experimental Studies on Shear Strength of High-Strength Lightweight Concrete Beam using the Industrial by-products (산업부산물을 활용한 고강도 경량콘크리트 보의 전단강도에 대한실험 연구)

  • Lee, Seung-Jo;Park, Jung-Min;Kim, Wha-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.621-630
    • /
    • 2006
  • Twelve beams made of lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. A total of 12 beams without(4 beams) and with lightweight(8 beams) were tested in a stiff testing facility, and complete load-midspan deflection curves, including the maximum capacities portion, were obtained. The variables in the test program were concrete strength, which varied 35.4 MPa, 65.3 MPa; shear span-depth ratios a/d=1.5, 2.5, 3.5, 4.5; and tensile steel ratio between 0.57 and 2.3 percent. Also, we divided beam by diagonal tension crack and ultimate shearing strength to propose an equation. In addition, it analyzed comparison mutually applying existing proposal and guide. $V_{cr}$ was as result that AIK recommendations and Zsutty proposal decrease more than a/d=2.5, increased some in Mathey's proposal equation. $V_{cr,\exp}/V_{cr,cal}$ showed tendency of overestimation according to increase of tensile steel ratio and compressive strength of concrete. On the other hand, $V_{cr,\exp}/V_{cr,cal}$ is superior in conformability with an experiment result Zsutty's proposal among other equations. The proposal equation hew that expect $V_{cr}/V_u$, rationally about shearing strength. Therefore, shear strength an equation is considered to be utilized usefully evaluating capacity by change of the shear span depth ratio of lightweight concrete, tensile steel ratio, and compressive strength of the concrete in this research.

Dynamic Analysis of Axisymmetric Prestressed Shell Structures Subjected to Seismic Excitations (지진하중을 받는 축대칭 프리스트레스트 쉘 구조물의 동적해석)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.11-22
    • /
    • 1998
  • An axisymmetric shell element which includes the effects of the meridional and circumferential cable prestresses is developed. It is coded for personal computer by the maximum use of axisymmetic properties and the dynamic analysis is performed under the seismic exitations. A ring element is used to fully utilize the characteristics of the axisymmetric shell. The eigenvalue solutions using 20 elements under the initial prestresses are in good agreement with the exact solutions. The results of the seismic analysis show that the radial deflection under the meridional prestress is a little larger than that under the circumferential prestress. The finite element model developed in this study can be very useful to the design applications.

  • PDF

Steel Fibers Efficiency as Shear Reinforcement in Concrete Beams (섬유보강콘크리트 보의 전단거동에 미치는 강섬유의 효과)

  • 문제길;홍익표
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.118-128
    • /
    • 1994
  • There have been conducted a lot of works on shear behavior of steel fiber reinforced concrete beams. Fiber reinforced concrete beams without shear reinforcement were tested to determine their cracking shear strengths and ultimate shear capacities. Results of tests on 14 reinforced concrete beams (including 11 containing steel fibers) are reported. Two parameters were varied in the study, namely, the volume fraction of fibers and shear span-to-depth ratio.The effects of fiber incorporation on failure modes, deflections, cracking shear strength, and ul~imate shear strength have been examined. Resistance to shear stresses have been found to be improved by the inclusion of fibers, The mode of failure changed from shear to flexure when the shear span-to-depth ratio exceeds 3.4. Based on these investigations, a method of computing the shear strength of steel fiber reinforced concrete beam is suggested. The comparisons between computed values and expenmentally observed values are shown to verify the proposed theoretical treatment and steel fibers efficiency.

An Experimental Evaluation on Vibration Serviceability of Existing Bridge by Non-contact Vibration Measurement Method (비부착식 진동측정방법에 의한 공용중 교량의 진동사용성에 대한 실험적 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae;Lee, Kyu-Wan;Jun, Jin-Taek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.254-262
    • /
    • 2010
  • In order to evaluate vibration serviceability by means of non-contact vibration meter, serviceability of existing bridge were experimentally evaluated by using laser vibration meter. Test results were analyzed and compared with evaluation results acquired by using accelerometer and LVDT. To testify accuracy of laser vibration meter measured natural frequency were compared with that acquired by using accelerometer. According to test and comparison results it is showed that serviceability can be evaluated properly enough from the tolerance curve of Reiher-Meister for the estimated acceleration that can be calculated by the numerical differentiation of measured velocity. But because of cumulative numerical error occurred during integration of measured velocity in the time domain serviceability grade could be different from the result acquired by LVDT.