• Title/Summary/Keyword: 처분공

Search Result 354, Processing Time 0.024 seconds

Emplacement Process of the HLW in the Deep Geological Repository (지하처분장에서의 고준위폐기물 처분공정 개념)

  • 이종열;김성기;조동건;최희주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1013-1016
    • /
    • 2004
  • High level radioactive wastes, such as spent fuels generated from nuclear power plant, will be disposed in a deep geological repository. To maintain the integrity of the disposal canister and to carry out the process effectively, the emplacement process for the canister system in borehole of disposal tunnel should be well defined. In this study, the concept of the disposal canister emplacement process for deep geological disposal was established. To do this, the spent fuel arisings and disposal rate were reviewed. Also, not only design requirements, such canister and disposal depth but also preliminary repository layout concept were reviewed. Based on the requirements and the other bases, the canister emplacement process in the borehole of the disposal tunnel was established. The established concept of the disposal canister emplacement process will be improved continuously with the future studies. And this concept can be effectively used in implementing the reference repository system of our own case.

  • PDF

Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository (심층처분장 처분공 주변 굴착손상영역에 존재하는 불연속면으로의 압축 벤토나이트 침투)

  • Lee, Changsoo;Cho, Won-Jin;Kim, Jin-Seop;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.193-213
    • /
    • 2020
  • A mathematical model to simulate more realistically the penetration of compacted bentonite buffer installed in the deposition hole into the discontinuity in the excavation damaged zone formed at the inner wall of the deposition hole in the geological repository for spent fuel is developed. In this model, the penetration of compacted bentonite is assumed to be the flow of Bingham fluid through the parallel planar rock fracture. The penetration of compacted bentonite is analyzed using the developed model. The results show that the maximum penetration depth of compacted bentonite into the rock fracture is proportioned to the swelling pressure of saturated compacted bentonite and the aperture of rock fracture. However, it is in inverse proportion to the yield strength of compacted bentonite. The viscosity of compacted bentonite dominates the penetration rate of compacted bentonite, but has no influence to the maximum penetration depth.

Thermal-mechanical sensitivity analysis for the near-field of HLW repository (고준위 폐기물 처분장 near-field에 대한 열-역학적 민감도 분석)

  • 권상기;최종원;강철형
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.138-152
    • /
    • 2003
  • Three-dimensional computer modeling using FLAC3D had been carried out fur evaluating the thermal-mechanical stability of a high-level radioactive waste repository excavated in several hundred deep location. For effective modeling, a FISH program was made and the geological conditions and rock properties achieved from the drilling sites in Kosung and Yusung areas were used. Sensitivity analysis fer the stresses and temperatures from the modeling designed utilizing fractional factorial design was carried out. From the sensitivity analysis, the important design parameters and their interactions could be determined. From this study, it was found that deposition hole spacing is the most important parameter on the thermal and mechanical stability. The second and third most important parameters were disposal tunnel and buffer thickness.

Saturation Prediction of Bentonite Buffer in a Waste Disposal Repository (처분터널 내 벤토나이트 완충재 포화예측)

  • Kim, Jin-Seop;Lee, Chang-Soo;Jo, Won-Jin;Choi, Young-Chul;Choi, Heui-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.361-362
    • /
    • 2014
  • 본 연구의 목적은 벤토나이트 완충재를 처분공에 설치하였을 때 벤토나이트와 암반의 상호작용을 중심으로 이의 포화과정을 제대로 모사할 수 있는 지와, 현장암반의 절리가 수치해석 결과에 어떠한 영향을 미치는가를 파악하는 것이다. 유한차분 해석코드인 TOUGH2 코드를 이용하여 벤토나이트의 수리거동을 분석하였다. 해석결과 암반의 절리가 존재할 경우 완충재의 포화도는 상대적으로 매우 빠르게 진행되었으며, 벤토나이트의 높은 모세관 압력으로 인해 시간경과에 따라 주변암반의 포화도가 점진적으로 감소됨을 확인하였다.

  • PDF

Analysis of the Spent Fuel Cooling Time for a Deep Geological Disposal (심지층 처분을 일한 사용후핵연료 냉각기간 분석)

  • Lee, Jong-Youl;Cho, Dong-Geun;Choi, Heui-Joo;Choi, Jong-Won;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2008
  • The purpose of the HLW deep geological disposal is to isolate and to delay the radioactive material release to human beings and the environment for a long time so that the toxicity does not affect to the environment. The main requirements for the HLW repository design is to keep the buffer temperature below $100\;^{\circ}C$ in order to maintain its integrity. So the cooling time of spent fuels discharged from the nuclear power plant is the key consideration factors for efficiency and economic feasibility of the repository. The disposal tunnel/disposal hole spacing, the disposal area and thermal capacity required for the deep geological repository layout which satisfies the temperature requirement of the disposal system is analyzed to set the optimized spent fuels cooling time. To do this, based on the reference disposal concept, thermal stability analyses of the disposal system have been performed and the derived results have been compared by setting the spent fuels cooling time and the disposal tunnel/disposal hole spacing in various ways. From these results, desirable spent fuels cooling time in view of disposal area is derived. The results shows that the time reaching the maximum temperature within the design limit of the temperature in the disposal site is likely shortened as the cooling time of spent fuels becomes short. Also it seems that the temperature-rising and-dropping patterns in the disposal site are of smoothly varying form as the cooling time of spent fuels becomes long. In addition, it is revealed that a desirable cooling time of spent fuels is approximately 40-50 years when spent fuels are supposedly disposed in the deep geological disposal site with its structural scale under consideration in this study.

  • PDF

심지층 처분을 위한 사용후핵연료 포장공정 개념설정

  • 이종열;김성기;최희주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.104-104
    • /
    • 2004
  • 현재 우리나라는 원자력에 의한 전력량이 전체 용량의 40 %에 이르고 있으며, 장기전력 수급계획에 의한 2015년까지 운전예정인 28기 원자력발전소로부터 발생하여 누적될 것으로 예상되는 사용후핵연료는 Fig. 1에서 보이는 바와 같이 총 36,000 tHM (PWR 20,000tHM + CANDU 16,000tHM)에 이를 것으로 전망된다. 이러한 사용후핵연료는 고준위폐기물로 분류되며, 지하 수백미터에 위치한 암반에 처분하는 개념에 대한 연구가 활발하게 진행되고 있다.(중략)

  • PDF