• Title/Summary/Keyword: 처분공

Search Result 362, Processing Time 0.023 seconds

A Study on Excavation Responses of Underground Openings for Radioactive Waste Disposal (굴착으로 인한 방사성폐기물 지하처분공동의 거동변화)

  • 김선훈;김대홍;최규섭;김진웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.174-179
    • /
    • 1992
  • In this paper a discussion is presented about excavation responses of underground openings for radioactive waste disposal. The effects of excavation methods, stress redistribution, thermal change, and backfill materials are reviewed. Comparisons of computational models for discontinuous reek masses and discussions on numerical simulation techniques for the excavation of underground openings are also described. Finally, the application of the CAD system to the planning, design and construction of underground openings fop radioactive waste disposal is introduced.

  • PDF

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.

An Introduction to the DECOVALEX-2019 Task G: EDZ Evolution - Reliability, Feasibility, and Significance of Measurements of Conductivity and Transmissivity of the Rock Mass (DECOVALEX-2019 Task G 소개: EDZ Evolution - 굴착손상영역 평가를 위한 수리전도도 및 투수량계수 측정의 신뢰도, 적합성 및 중요성)

  • Kwon, Saeha;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.306-319
    • /
    • 2020
  • Characterizations of Excavation Damage Zone (EDZ), which is hydro-mechanical degrading the host rock, are the important issues on the geological repository for the spent nuclear fuel. In the DECOVALEX 2019 project, Task G aimed to model the fractured rock numerically, describe the hydro-mechanical behavior of EDZ, and predict the change of the hydraulic factor during the lifetime of the geological repository. Task G prepared two-dimensional fractured rock model to compare the characteristics of each simulation tools in Work Package 1, validated the extended three-dimensional model using the TAS04 in-situ interference tests from Äspö Hard Rock Laboratory in Work Package 2, and applied the thermal and glacial loads to monitor the long-term hydro-mechanical response on the fractured rock in Work Package 3. Each modelling team adopted both Finite Element Method (FEM) and Discrete Element Method (DEM) to simulate the hydro-mechanical behavior of the fracture rock, and added the various approaches to describe the EDZ and fracture geometry which are appropriate to each simulation method. Therefore, this research can introduce a variety of numerical approaches and considerations to model the geological repository for the spent nuclear fuel in the crystalline fractured rock.

Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermohydro-mechanical-chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 처분장 내 열-수리-역학-화학적 복합거동 해석을 위한 국제공동연구 DECOVALEX-2023에서 수행 중인 연구 과제 소개)

  • Kim, Taehyun;Lee, Changsoo;Kim, Jung-Woo;Kang, Sinhang;Kwon, Saeha;Kim, Kwang-Il;Park, Jung-Wook;Park, Chan-Hee;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.3
    • /
    • pp.167-183
    • /
    • 2021
  • It is essential to understand the complex thermo-hydro-mechanical-chemical (THMC) coupled behavior in the engineered barrier system and natural barrier system to secure the high-level radioactive waste repository's long-term safety. The heat from the high-level radioactive waste induces thermal pressurization and vaporization of groundwater in the repository system. Groundwater inflow affects the saturation variation in the engineered barrier system, and the saturation change influences the heat transfer and multi-phase flow characteristics in the buffer. Due to the complexity of the coupled behavior, a numerical simulation is a valuable tool to predict and evaluate the THMC interaction effect on the disposal system and safety assessment. To enhance the knowledge of THMC coupled interaction and validate modeling techniques in geological systems. DECOVALEX, an international cooperation project, was initiated in 1992, and KAERI has participated in the projects since 2008 in Korea. In this study, we introduced the main contents of all tasks in the DECOVALEX-2023, the current DECOVALEX phase, to the rock mechanics and geotechnical researchers in Korea.

Site Selection Methods for High-Level Radioactive Waste Disposal Facilities: An International Comparison (고준위방사성폐기물 처분시설 부지선정 방식 해외사례 분석)

  • HyeRim Kim;MinJeong Kim;SunJu Park;WoonSang Yoon;JungHoon Park;JeongHwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.335-353
    • /
    • 2023
  • Site selection processes for high-level radioactive waste disposal facilities in different countries differ in terms of local geology and degree of public engagement. There seem to be three alternative processes for site selection: (1) selection with community consent after government choice; (2) selection with continuous community engagement after exclusion of unsuitable areas based on existing survey data; or (3) site selection where communities have expressed a willingness to participate. The Yucca Mountain site in Nevada, USA, was selected as the final disposal site by process (1) through six stages, but its development was suspended owing to opposition from the local governor and environmental groups. In Sweden, Switzerland, and Germany, process (2) is used and sites are selected through three stages. Sweden and Switzerland have completed site selection, and Germany is currently engaged in the process. The UK adopted process (3) with six stages, although the process has been suspended owing to poor community participation. In Korea, temporary storage facilities for spent nuclear fuel will reach saturation from 2030, so site selection must be promoted through various laws and systems, with continuous communication with local communities based on transparent and scientifically undertaken procedures.

Case Studies of Site Investigation Factors and Methods for Site Selection for High-Level Radioactive Waste Disposal (고준위방사성폐기물 처분 부지선정을 위한 조사인자 및 조사기법에 대한 국외사례 분석)

  • Hyo Geon Kim;Si Won Yoo;Dae Seok Bae;Soo Hwan Jung;Ki Su Kim;Jun Kyum Kim;Man Ho Han;Junghae Choi
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.611-626
    • /
    • 2023
  • Overseas examples of the characterization stage of site selection proposed by the International Atomic Energy Agency were reviewed to highlight the factors necessary for consideration in the deep disposal of high-level radioactive waste. Studies in Sweden, Finland, the USA, and Canada were considered. Site investigations in Sweden and Finland commonly covered the fields of geology, hydrogeology, and hydrogeochemistry using similar field investigation techniques. The USA considered survey groups and factors under pre- and post-lockdown guidelines, as well as those for desaturated and saturated surveys. involving geophysical, hydrological, hydrogeological, hydrogeochemical, mechanical/physical, and thermal-characterization investigations. Canada provided a list of investigative methods for both preliminary and detailed site assessments including geological, physical, boring, hydrological, laboratory testing, and chemical analysis studies. Results of this study should elucidate site-selection investigation factors and survey methods applicable to Korea.

Case Study of Deep Geological Disposal Facility Design for High-level Radioactive Waste (스웨덴 고준위방사성폐기물 심층처분시설의 설계 사례 분석)

  • Juhyi Yim;Jae Hoon Jung;Seokwon Jeon;Ki-Il Song;Young Jin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.312-338
    • /
    • 2023
  • The underground disposal facility for spent nuclear fuel demands a specialized design, distinct from conventional practices, to ensure long-term thermal, mechanical, and hydraulic integrity, preventing the release of radioactive isotopes from high-temperature spent nuclear fuel. SKB has established design criteria for such facilities and executed practical design implementations for Forsmark. Moreover, in response to subsurface uncertainty, SKB has proposed an empirical approach involving monitoring and adaptive design modifications, alongside stepwise development. SKB has further introduced a unique support system, categorizing ground types and behaviors and aligning them with corresponding support types to confirm safety through comparative analyses against existing systems. POSIVA has pursued a comparable approach, developing a support system for Onkalo while accounting for distinct geological characteristics compared to Forsmark. This demonstrates the potential for domestic implementation of spent nuclear fuel disposal facility designs and the establishment of a support system adapted to national attributes.

Review of In-situ Installation of Buffer and Backfill and Their Water Saturation Management for a Deep Geological Disposal System of Spent Nuclear Fuel (국외 사례를 통한 사용후핵연료 심층처분시스템 완충재 및 뒤채움재의 현장시공 및 포화도 관리 기술 분석)

  • Ju-Won Yun;Won-Jin Cho;Hyung-Mok Kim
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.104-126
    • /
    • 2024
  • Buffer and backfill play an essential role in isolating high-level radioactive waste and retard the migration of leaked radionuclides in deep geological disposal system. A bentonite mixture, which exhibits a swelling property, is considered for buffer and backfill materials, and excessive groundwater inflow from surrounding rock mass may affect stability and efficiency of their role as an engineered barrier. Therefore, stringent quality control as well as in-situ installation management and inflow water constrol for buffer and backfill are required to ensure the safety of deep disposal facilities. In this study, we analyzed the design requirements of buffer and backfill by examining various laboratory tests and a field study of the Steel Tunnel Test at the Äspö Hard Rock Laboratory in Sweden. We introduced how to control the quality of buffer and backfill construction in-field, and also presented how to handle excessive groundwater inflow into disposal caverns, validating the groundwater retention capacity of bentonite pellets and the effectiveness of geotexile use.

The Development of Straddle Packer Hydraulic Testing Equipment to Characterize Permeability in Deep Boreholes (장심도 시추공 정밀수리시험 장비 구축)

  • Kim, Kyung-Su;Park, Kyung-Woo;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.213-220
    • /
    • 2010
  • The permeability characterization on the natural barrier for deep geological disposal of radioactive waste is very critical to evaluate total safety and performance assessment of disposal site. However, the confidence level in using previous hydraulic testing equipments consist of simple components to estimate rock mass permeability is not high enough to reflect in situ condition. The purpose of this research is to establish an advanced hydraulic testing equipment, which is applicable to deep borehole (up to 1,000 m), through the improvement of technical problems of previous packer systems. Especially, the straddle packer hydraulic testing equipment was designed to adopt both the hydraulic downhole shut-in valve(H-DHSIV) to minimize the wellbore storage effect and the real time data acquisition system to measure the pressure changes of test interval including its upper and lower parts. The results from this research lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project.

Development of Methodology for Fracture Network Analysis in the Unsaturated Zone using MINC Approach in TOUGH2 Code (TOUGH2 전산코드의 MINC 기법을 이용한 불포화 암반 내 단열 해석 방법론 개발)

  • Ha, Jaechul;Cheong, Jae-yeol;Kim, Soogin;Yoon, Jeonghyoun
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • The second phase of low- and intermediate-level waste (LILW) disposal facility is under planned on the sedimentary rock in unsaturated zone. In this study, we created two meshes which were a matrix continuum mesh and a fracture continuum mesh to carry out 2 dimensional numerical modeling for groundwater flow in the unsaturated zone containing fractures focused on the second phase of LILW disposal facility. Two continuum meshes were developed using MINC in meshmaker module of TOUGH2 code. A fracture continuum mesh was included the k-field distribution of the permeability derived from the Discrete Fractured Network (DFN) modeling. To apply the unsaturated zone for the modeling, the gridding steps to generate mesh were developed. Each step to generate a mesh consisted of definition of materials, setting the initial conditions and creating grids using MINC. The methodology development of meshes in this study will be applied for more precise modeling of groundwater flow and mass transport.