• Title/Summary/Keyword: 처방선량

Search Result 158, Processing Time 0.03 seconds

Estimation of Fetal Dose during Radiation Therapy of Pregnant Patient (임산부의 방사선치료 시 태아선량 평가)

  • Jung, Chi-Hoon;Kim, Chan-Yong;Kim, Bo-Gyum;Seo, Suk-Jin;Yoo, Sook-Hyun;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • Purpose: To evaluate the effectiveness of a simple and practical shielding device to reduce the fetal dose for a pregnant patient undergoing radiation therapy of brain metastasis. Materials and Methods: The dose to the fetus was evaluated by simulating the treatments using the anthropomorphic phantom. The prescription dose at mid-brain is $300cGy{\times}10$ fractions with 6 MV photon with $18{\times}22cm^2$ field size. The additional shielding devices to reduce the fetal dose are a shielding wall, cerrobend plates and lead (Pb) sheets over acrylic bridge. Various points of measurement with off-field distance were detected by using ion-chamber (30, 40, 50, and 60 cm) with and without the shielding devices and TLD (30, 40, 50, 60, and 70 cm) only with the shielding devices. Results: The doses to the fetus without shielding were 3.20, 3.21, 1.44, 0.90 cGy at the distances of 30, 40, 50, and 60 cm from the treatment field edge. With shielding, the doses were reduced to 0.88, 0.60, 0.35, 0.25 cGy, and the ratio of the shielding effect varied from 70% to 80%. TLD results were 1.8, 1.2, 0.8, 1.2, and 0.8 cGy (70 cm). The total dose to the fetus was expected to be under 1 cGy during the entire treatment. Conclusion: The essential point during radiation therapy of pregnant patient would be minimizing the fetal dose. 10 cGy to 20 cGy is the threshold dose for fetal radiation effects. Our newly developed device reduced the fetal dose far below the safe level. Therefore, our additional shielding devices are useful and effective to reduce the fetal dose.

  • PDF

Comparison of the Dose of the Normal Tissues among Various Conventional Techniques for Whole Brain Radiotherapy (여러 통상적인 전뇌방사선치료 기법에서의 정상조직의 조사선량 비교)

  • Kang, Min-Kyu
    • Radiation Oncology Journal
    • /
    • v.28 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • Purpose: To compare radiation dose of the brain and lens among various conventional whole brain radiotherapy (WBRT) techniques. Materials and Methods: Treatment plans for WBRT were generated with planning computed tomography scans of 11 patients. A traditional plan with an isocenter located at the field center and a parallel anterior margin at the lateral bony canthus was generated (P1). Blocks were automatically generated with a 1 cm margin on the brain (5 mm for the lens). Subsequently, the isocenter was moved to the lateral bony canthus (P2), and the blocks were replaced into the multileaf collimator (MLC) with a 5 mm leaf width in the craniocaudal direction (P3). For each patient plan, 30 Gy was prescribed at the isocenter of P1. Dose volume histogram (DVH) parameters of the brain and lens were compared by way of a paired t-test. Results: Mean values of $D_{max}$ and $V_{105}$ of the brain in P1 were 111.9% and 23.6%, respectively. In P2 and P3, $D_{max}$ and $V_{105}$ of the brain were significantly reduced to 107.2% and 4.5~4.6%, respectively (p<0.001). The mean value of $D_{mean}$ of the lens was 3.1 Gy in P1 and 2.4~2.9 Gy in P2 and P3 (p<0.001). Conclusion: WBRT treatment plans with an isocenter located at the lateral bony canthus have dosimetric advantages for both the brain and lens without any complex method changes.

Evaluation of Applicability of Customized Bolus According to 3D Printer Material Characteristics (3D 프린터 소재 특성에 따른 맞춤형 볼루스의 적용성 평가)

  • Kyung-Tae Kwon;Hui-Min Jang;Myeong-Seong Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1091-1097
    • /
    • 2023
  • Bolus is used in radiation therapy to prescribe an even dose to the tumor when the skin surface is inclined or has irregularities. At this time, the dose to the skin surface increases. Due to the patient's unique body structure and irregular skin, voids may occur between the bolus and the skin, which may reduce the accuracy of treatment. Therefore, in this study, the existing bolus and the self-produced bolus through 3D printing were applied to the nasal area, and the difference between the surface dose after treatment plan and the dose directly measured with an Optically Stimulated luminescence(OSL) dosimeter was compared to the existing bolus. The bolus rate was 97%, PLA 100.33%, ePETELA 75A 100.53%, and ePETELA 85A 100.36%. It was confirmed that there was little error in the measurement values and treatment plan values for each material. In addition, compared to when applying a conventional bolus, a difference of -3% to +0.5% for a 3D printed bolus can be confirmed, so a customized bolus produced through 3D printing can complement the shortcomings of the existing bolus. It is believed that there will be.

Imaging dose evaluations on Image Guided Radiation Therapy (영상유도방사선치료시 확인 영상의 흡수선량평가)

  • Hwang, Sun Boong;Kim, Ki Hwan;kim, il Hwan;Kim, Woong;Im, Hyeong Seo;Han, Su Chul;Kang, Jin Mook;Kim, Jinho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Purpose : Evaluating absorbed dose related to 2D and 3D imaging confirmation devices Materials and Methods : According to the radiographic projection conditions, absorbed doses are measured that 3 glass dosimeters attached to the centers of 0', 90', 180' and 270' in the head, thorax and abdomen each with Rando phantom are used in field size $26.6{\times}20$, $15{\times}15$. In the same way, absorbed doses are measured for width 16cm and 10cm of CBCT each. OBI(version 1.5) system and calibrated glass dosimeters are used for the measurement. Results : AP projection for 2D imaging check, In $0^{\circ}$ degree absorbed doses measured in the head were $1.44{\pm}0.26mGy$ with the field size $26.6{\times}20$, $1.17{\pm}0.02mGy$ with the field size $15{\times}15$. With the same method, absorbed doses in the thorax were $3.08{\pm}0.86mGy$ to $0.57{\pm}0.02mGy$ by reducing field size. In the abdomen, absorbed dose were reduced $8.19{\pm}0.54mGy$ to $4.19{\pm}0.09mGy$. Finally according to the field size, absorbed doses has decreased by average 5~12%. With Lateral projection, absorbed doses showed average 5~8% decrease. CBCT for 3D imaging check, CBDI in the head were $4.39{\pm}0.11mGy$ to $3.99{\pm}0.13mGy$ by reducing the width 16cm to 10cm. In the same way in thorax the absorbed dose were reduced $34.88{\pm}0.93(10.48{\pm}0.09)mGy$ to $31.01{\pm}0.3(9.30{\pm}0.09)mGy$ and $35.99{\pm}1.86mGy$ to $32.27{\pm}1.35mGy$ in the abdomen. With variation of width 16cm and 10cm, they showed 8~11% decrease. Conclusion : By means of reducing 2D field size, absorbed dose were decreased average 5~12% in 3D width size 8~11%. So that it is necessary for radiation therapists to recognize systematical management for absorbed dose for Imaging confirmation. and also for frequent CBCT, it is considered whether or not prescribed dose for RT refer to imaging dose.

  • PDF

Comparative evaluation of dose according to changes in rectal gas volume during radiation therapy for cervical cancer : Phantom Study (자궁경부암 방사선치료 시 직장가스 용적 변화에 따른 선량 비교 평가 - Phantom Study)

  • Choi, So Young;Kim, Tae Won;Kim, Min Su;Song, Heung Kwon;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.89-97
    • /
    • 2021
  • Purpose: The purpose of this study is to compare and evaluate the dose change according to the gas volume variations in the rectum, which was not included in the treatment plan during radiation therapy for cervical cancer. Materials and methods: Static Intensity Modulated Radiation Therapy (S-IMRT) using a 9-field and Volumetric Modulated Arc Therapy (VMAT) using 2 full-arcs were established with treatment planning system on Computed Tomography images of a human phantom. Random gas parameters were included in the Planning Target Volume(PTV) with a maximum change of 2.0 cm in increments of 0.5 cm. Then, the Conformity Index (CI), Homogeneity Index (HI) and PTV Dmax for the target volume were calculated, and the minimum dose (Dmin), mean dose (Dmean) and Maximum Dose (Dmax) were calculated and compared for OAR(organs at risk). For statistical analysis, T-test was performed to obtain a p-value, where the significance level was set to 0.05. Result: The HI coefficients of determination(R2) of S-IMRT and VMAT were 0.9423 and 0.8223, respectively, indicating a relatively clear correlation, and PTV Dmax was found to increase up to 2.8% as the volume of a given gas parameter increased. In case of OAR evaluation, the dose in the bladder did not change with gas volume while a significant dose difference of more than Dmean 700 cGy was confirmed in rectum using both treatment plans at gas volumes of 1.0 cm or more. In all values except for Dmean of bladder, p-value was less than 0.05, confirming a statistically significant difference. Conclusion: In the case of gas generation not considered in the reference treatment plan, as the amount of gas increased, the dose difference at PTV and the dose delivered to the rectum increased. Therefore, during radiation therapy, it is necessary to make efforts to minimize the dose transmission error caused by a large amount of gas volumes in the rectum. Further studies will be necessary to evaluate dose transmission by not only varying the gas volume but also where the gas was located in the treatment field.

Evaluation of accuracy in the ExacTrac 6D image induced radiotherapy using CBCT (CBCT을 이용한 ExacTrac 6D 영상유도방사선치료법의 정확도 평가)

  • Park, Ho Chun;Kim, Hyo Jung;Kim, Jong Deok;Ji, Dong Hwa;Song, Ju Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.109-121
    • /
    • 2016
  • To verify the accuracy of the image guided radiotherapy using ExacTrac 6D couch, the error values in six directions are randomly assigned and corrected and then the corrected values were compared with CBCT image to check the accurateness of ExacTrac. The therapy coordination values in the Rando head Phantom were moved in the directions of X, Y and Z as the translation group and they were moved in the directions of pitch, roll and yaw as the rotation group. The corrected values were moved in 6 directions with the combined and mutual reactions. The Z corrected value ranges from 1mm to 23mm. In the analysis of errors between CBCT image of the phantom which is corrected with therapy coordinate and 3D/3D matching error value, the rotation group showed higher error value than the translation group. In the distribution of dose for the error value of the therapy coordinate corrected with CBCT, the restricted value of dosage for the normal organs in two groups meet the prescription dose. In terms of PHI and PCI values which are the dose homogeneity of the cancerous tissue, the rotation group showed a little higher in the low dose distribution range. This study is designed to verify the accuracy of ExacTrac 6D couch using CBCT. It showed that in terms of the error value in the simple movement, it showed the comparatively accurate correction capability but in the movement when the angle is put in the couch, it showed the inaccurate correction values. So, if the body of the patient is likely to have a lot of changes in the direction of rotation or there is a lot of errors in the pitch, roll and yaw in ExacTrac correction, it is better to conduct the CBCT guided image to correct the therapy coordinate in order to minimize any side effects.

  • PDF

Dosimetric Comparison of Left-sided Whole Breast Irradiation using a Virtual Bolus with VMAT and static IMRT (좌측 유방의 세기변조 방사선치료 시 Virtual Bolus 적용에 따른 선량 변화 비교 평가)

  • Lim, Kyeong Jin;Kim, Tae Woan;Jang, Yo Jong;Yang, Jin Ho;Lee, Seong Hyeon;Yeom, Du Seok;Kim, Seon Yeong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.51-63
    • /
    • 2019
  • Purpose: Radiation therapy for breast cancer should consider the change in breast shape due to breathing and swelling. In this study, we evaluate the benefit of using virtual bolus for IMRT of left breast cancer. Materials and methods: 10 patients with early breast cancer who received radiation therapy after breastconserving surgery compared the VMAT and IMRT plans using the virtual bolus method and without using it. The first analysis compared the V95%, HI, CI of treatment volume, Dmean, V5, V20, V30 of ipsilateral lung, and Dmean of heart in VMAT plan made using the virtual bolus method(VMAT_VB) to the plan without using it(VMAT_NoVB) in case there is no change in the breast. In IMRT, the same method was used. The second analysis compared TCP and NTCP based on each treatment plan in case there is 1cm expansion of treatment volume. Result: If there is no change in breast, V95% in VB Plan(VMAT_VB, IMRT_VB) and NoVB Plan(VMAT_NoVB, IMRT_NoVB) is all over 99% on each treatment plan. V95% in VMAT_NoVB and VMAT_VB is 99.80±0.17% and 99.75±0.12%, V95% in IMRT_NoVB and IMRT_VB is 99.67±0.26% and 99.51±0.15%. Difference of HI, CI is within 3%. OAR dose in VB plan is a little high than NoVB plan, and did not exceed guidelines. If there is 1cm change in breast, VMAT_NoVB and IMRT_NoVB are less effective for treatment. But VMAT_VB and IMRT_VB continue similar treatment effect compared in case no variation of breast. Conclusion: This study confirms the benefit of using a virtual bolus during VMAT and IMRT to compensate potential breast shape modification.

Verification of Non-Uniform Dose Distribution in Field-In-Field Technique for Breast Tangential Irradiation (유방암 절선조사 시 종속조사면 병합방법의 불균등한 선량분포 확인)

  • Park, Byung-Moon;Bae, Yong-Ki;Kang, Min-Young;Bang, Dong-Wan;Kim, Yon-Lae;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.277-282
    • /
    • 2010
  • The study is to verify non-uniform dose distribution in Field-In-Field (FIF) technique using two-dimensional ionization chamber (MatriXX, Wellhofer Dosimetrie, Germany) for breast tangential irradiation. The MatriXX and an inverse planning system (Eclipse, ver 6.5, Varian, Palo Alto, USA) were used. Hybrid plans were made from the original twenty patients plans. To verify the non-uniform dose distribution in FIF technique, each portal prescribed doses (90 cGy) was delivered to the MatriXX. The measured doses on the MatriXX were compared to the planned doses. The quantitative analyses were done with a commercial analyzing tool (OmniPro IMRT, ver. 1.4, Wellhofer Dosimetrie, Germany). The delivered doses at the normalization points were different to average 1.6% between the calculated and the measured. In analysis of line profiles, there were some differences of 1.3-5.5% (Avg: 2.4%), 0.9-3.9% (Avg: 2.5%) in longitudinal and transverse planes respectively. For the gamma index (criteria: 3 mm, 3%) analyses, there were shown that 90.23-99.69% (avg: 95.11%, std: 2.81) for acceptable range ($\gamma$-index $\geq$ 1) through the twenty patients cases. In conclusion, through our study, we have confirmed the availability of the FIF technique by comparing the calculated with the measured using MatriXX. In the future, various clinical applications of the FIF techniques would be good trials for better treatment results.

The Study of Dose Variation and Change of Heart Volume Using 4D-CT in Left Breast Radiation Therapy (좌측 유방 방사선치료 시 4D-CT를 이용한 심장의 체적 및 선량변화에 대한 연구)

  • Park, Seon Mi;Cheon, Geum Seong;Heo, Gyeong Hun;Shin, Sung Pil;Kim, Kwang Seok;Kim, Chang Uk;Kim, Hoi Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2013
  • Purpose: We investigate the results of changed heart volume and heart dose in the left breast cancer patients while considering the movements of respiration. Materials and Methods: During the months of March and May in 2012, we designated the 10 patients who had tangential irradiation with left breast cancer in the department of radiation Oncology. With acquired images of free breathing pattern through 3D and 4D CT, we had planed enough treatment filed for covered up the whole left breast. It compares the results of the exposed dose and the volume of heart by DVH (Dose Volume histogram). Although total dose was 50.4 Gy (1.8 Gy/28 fraction), reirradiated 9 Gy (1.8 Gy/5 Fraction) with PTV (Planning Target Volume) if necessary. Results: It compares the results of heart volume and heart dose with the free breathing in 3D CT and 4D CT. It represents the maximum difference volume of heart is 40.5%. In addition, it indicated the difference volume of maximum and minimum, average are 8.8% and 27.9%, 37.4% in total absorbed dose of heart. Conclusion: In case of tangential irradiation (opposite beam) in left breast cancer patients, it is necessary to consider the changed heart volume by the respiration of patient and the heartbeat of patient.

  • PDF

Evaluation of Dosimetric Characteristics of Small Field in Cone Versus Square Fields Based on Linear Accelerators(LINAC) for Stereotactic Radiosugery(SRS) (선형가속기를 기반으로 한 뇌정위 방사선 수술 시 전용 콘과 정방형 소조사면의 선량 특성에 관한 고찰)

  • Yoon, Joon;Lee, Gui-Won;Park, Byung-Moon
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.61-66
    • /
    • 2010
  • In this paper we evaluated small field dose characteristics of exclusive cone fields versus square fields for stereotactic radiosugery (SRS) which is based on linear accelerators (LINAC). For this test, we used a small beam detector (stereotactic fields detector : SFD) with a 6 MV photon beam and a water phantom system (IBA, Germany). Percentage depth dose (PDD) was measured for different field sets (cones : ${\Phi}1\;cm$, ${\Phi}2\;cm$, ${\Phi}3\;cm$ ; square fields : $1{\times}1\;cm^2$, $2{\times}2\;cm^2$, $3{\times}3\;cm^2$) at a source skin distance (SSD) of 100 cm. We measured the point depths at 1.5 cm, 5 cm, 10 cm, 20 cm, and 30 cm. The output factors were measured under the same geometrical conditions of the PDD and normalized at the maximum dose depth. To analyze the penumbra, we measured the dose profile with 95 cm of SSD, 5 cm of depth for each field sizes (${\Phi}1\;cm$, ${\Phi}3\;cm$, $1{\times}1\;cm^2$, and $3{\times}3\;cm^2$) using SFD. We obtained the values for every 1 mm interval in the physical field (90%) and 0.5 mm interval in the penumbra region (20 to 80%). The PDD variation of exclusive cones and square fields were 4.3 to 7.9% lesser than the standard field size ($10{\times}10\;cm^2$. The variation of PDD was reduced while the field size was increased. To compare the beam quality, we analyzed the $PDD_{20,10}$ and the results showed under the 1% of variations for all experiments except for ${\Phi}1\;cm$ cone and $1{\times}1\;cm^2$ fields. Output factors of exclusive cone were increased 3.1~4.6% than the square fields, and the penumbra region of exclusive cone was reduced 20% as compared to the square fields. As the previous researches report, it is very important for SRS and SFD that precise dosimetry in small beam fields. In this paper, we showed the effectiveness of exclusive cone, compared to square field. And we will study on the various detector characteristics for small beam fields.