• 제목/요약/키워드: 챗 GPT

검색결과 7건 처리시간 0.021초

챗 GPT 의 문제점과 한계에 대한 고찰 (A Study on the Problems and Limitations of Chat GPT)

  • 박보경;한성수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.588-589
    • /
    • 2023
  • 챗 GPT 는 음성 혹은 문자로 사람과 대화할 수 있는 컴퓨터 프로그램인 챗봇(ChatBot) 중 하나이다. 최근 챗 GPT 의 사용자가 급격히 증가하면서 다양한 문제점과 한계가 발견되고 있다. 본 논문에서는 챗 GPT 를 활용 시 발생하는 문제와 한계에 대하여 살펴본다. 챗 GPT 의 문제점에는 챗 GPT 로 악성코드를 작성하는 사이버 범죄, 개인정보 침해 문제, 챗 GPT 로 과제 작성, 타인에게 챗 GPT 와 대화한 내용이 보이는 보안의 취약점이 발견되는 등이 있다. 챗 GPT 의 한계로는 실시간 학습 불가, 아는 것과 모르는 것의 구분 불가, 저작권 침해와 편향성과 같은 것이 있다. 본 논문이 챗 GPT 의 해결 가능한 문제를 신속하게 해결하고 남아있는 한계에 대한 잠재적인 해결책을 파악하는 데 도움이 되기를 기대한다.

챗GPT의 서비스 품질과 정보 품질이 패션 제품의 구매의도와 구전의도에 미치는 영향 (Effects of the Service Quality and Information Quality of ChatGPT on Purchase Intention and Word of Mouth Intention for Fashion Products)

  • 박현혜;이윤선;신은정
    • 한국의류학회지
    • /
    • 제47권6호
    • /
    • pp.1038-1056
    • /
    • 2023
  • This study investigates the effects of ChatGPT's quality characteristics (service and information) on purchase intention and word of mouth intention. We distributed questionnaires among domestic men and women aged in their 20s and 30s who had experience of using ChatGPT. A total of 222 responses were subjected to frequency analysis, factor analysis, correlation analysis, and multiple linear regression analysis using the IBM SPSS statistical program version 26. The major findings were as follows: (1) The factors of service quality were categorized as Tangibility, Reliability, Empathy, and Assurance, while the factors of information quality were categorized as Recency, Accuracy, and Usefulness. (2) Among the service quality factors of ChatGPT, two factors (Reliability and Empathy) significantly impacted purchase intention, and three factors (Tangibility, Reliability, and Empathy) significantly affected word of mouth intention. (3) Among ChatGPT's information quality factors, two factors (Usefulness and Recency) had a significant effect on purchase intention, and two factors (Usefulness and Accuracy) exerted a significant influence on word of mouth intention. (4) Purchase intention had a significant effect on word of mouth intention.

인공지능을 활용한 통합방위체계의 효율성 분석 (Efficiency Analysis of Integrated Defense System Using Artificial Intelligence)

  • 유병덕;신진
    • 융합보안논문지
    • /
    • 제23권1호
    • /
    • pp.147-159
    • /
    • 2023
  • 최근 챗 GPT 인공지능(AI)은 전 세계 모든 정부 및 기업, 군 분야까지 초미의 관심사이다. 기존의 읽고 쓰는 AI시대에서 말과 글과 그림을 만들어 내는 생성형 AI로 인간과의 소통까지도 가능한 시대에 진입했다. 최근 우리나라 국가 위기시 발령하는 국가기관의 현행 법·령의 복잡성과 전·평시 법률적용 시기의 모호성으로 인해 상황조치의 골든타임을 놓치는 경우가 많았다. 이러한 이유들로 대형 참사 및 북한과의 군사적 충돌 때마다 제대로 된 대응을 하지 못했다. 따라서 본 연구의 목적은 이러한 상황을 극복하기 위한 제언으로 국가 위기시 컨트럴타워 역할을 수행 할 수 있는 "국가위기 관리 기본모법" 과 이를 활용하는 "인공지능 관련법" 개정과 현재 인공지능 기술을 민·관·군·경과 상호 연동하는 "인공지능 거버넌스 활성화 방안" 및 전국 지자체 통합방위 종합상황실내 "MIDS 인공지능반"을 신설하여 인공지능을 활용한 미래의 통합방위체계 발전방안을 제시하였다.

트랜스포머 알고리즘의 멀티 헤드 어텐션과 피드포워드 네트워크에서 활용 가능한 효율적인 행렬 곱셈기 (An Efficient Matrix Multiplier Available in Multi-Head Attention and Feed-Forward Network of Transformer Algorithms)

  • 장석우;김동순
    • 전기전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.53-64
    • /
    • 2024
  • 자연어 처리 모델이 발전함에 따라 챗 GPT와 같은 대화형 언어 생성 AI 모델이 널리 사용되고 있다. 따라서 자연어 처리 최신 모델의 기반이 되는 트랜스포머 알고리즘을 하드웨어로 구현하여 연산 속도와 전력 소비량을 개선하는 것은 중요하다고 할 수 있다. 특히, 행렬 곱셈을 통해 문장에서 서로 다른 단어 간의 관계를 분석하는 멀티 헤드 어텐션과 피드 포워드 네트워크는 트랜스포머에서 연산량이 가장 큰 핵심적인 알고리즘이다. 본 논문에서는 기존의 시스톨릭 어레이를 변형하여 행렬 곱 연산 속도를 개선하고, 입력 단어 개수 변동에 따라 지연시간도 변동되는 유동적인 구조를 제안한다. 또한, 트랜스포머 알고리즘의 정확도를 유지하는 형태로 양자화를 하여 메모리 효율성과 연산 속도를 높였다. 본 논문은 평가를 위해 멀티헤드어텐션과 피드포워드 네트워크에서 소요되는 클럭사이클을 검증하고 다른 곱셈기와 성능을 비교하였다.

잠재 변수 모델링 기반 잠재 가중치 어텐션 계산을 통한 문맥적 답변 생성 기법 (Generating Contextual Answers Through Latent Weight Attention Calculations based on Latent Variable Modeling)

  • 이종원;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.611-614
    • /
    • 2024
  • 최근 많은 분야에서 인공지능을 사용한 산업이 각광을 받고 있고 그중 챗-GPT 로 인하여 챗봇에 관한 관심도가 높아져 관련 연구가 많이 진행되고 있다. 특히 질문에 대한 답변을 생성해주는 분야에 대한 연구가 많이 이루어지고 있는데, 질문-답변의 데이터 셋에 대한 학습 방식보다는 질문-답변-배경지식으로 이루어진 데이터 셋에 대한 학습 방식이 많이 연구가 되고 있다. 그러다 보니 배경지식을 어떤 방식으로 모델에게 이해를 해줄 지가 모델 성능에 큰 부분 차지한다. 그리고 최근 연구에 따르면 이러한 배경지식 정보를 이해시키기 위해 잠재 변수 모델링 기법을 활용하는 것이 높은 성능을 갖는다고 하고 트랜스포머 기반 모델 중 생성 문제에서 강점을 보이는 BART(Bidirectional Auto-Regressive Transformer)[1]도 주로 활용된다고 한다. 본 논문에서는 BART 모델에 잠재 변수 모델링 기법 중 잠재 변수를 어텐션에 곱하는 방식을 이용한 모델을 통해 답변 생성 문제에 관한 해결법을 제시하고 그에 대한 결과로 배경지식 정보를 담은 답변을 보인다. 생성된 답변에 대한 평가는 기존에 사용되는 BLEU 방식과 배경지식을 고려한 방식의 BLEU 로 평가한다.

챗GPT 등장 이후 인공지능 환각 연구의 문헌 검토: 아카이브(arXiv)의 논문을 중심으로 (Literature Review of AI Hallucination Research Since the Advent of ChatGPT: Focusing on Papers from arXiv)

  • 박대민;이한종
    • 정보화정책
    • /
    • 제31권2호
    • /
    • pp.3-38
    • /
    • 2024
  • 환각은 대형언어모형이나 대형 멀티모달 모형의 활용을 막는 큰 장벽이다. 본 연구에서는 최신 환각 연구 동향을 살펴보기 위해 챗 GPT 등장 이후인 2022년 12월부터 2024년 1월까지 아카이브(arXiv)에서 초록에 '환각'이 포함된 컴퓨터과학 분야 논문 654건을 수집해 빈도분석, 지식연결망 분석, 문헌 검토를 수행했다. 이를 통해 분야별 주요 저자, 주요 키워드, 주요 분야, 분야 간 관계를 분석했다. 분석 결과 '계산 및 언어'와 '인공지능', '컴퓨터비전 및 패턴인식', '기계학습' 분야의 연구가 활발했다. 이어 4개 주요 분야 연구 동향을 주요 저자를 중심으로 데이터 측면, 환각 탐지 측면, 환각 완화 측면으로 나눠 살펴보았다. 주요 연구 동향으로는 지도식 미세조정(SFT)과 인간 피드백 기반 강화학습(RLHF)을 통한 환각 완화, 생각의 체인(CoT) 등 추론 강화, 자동화와 인간 개입의 병행, 멀티모달 AI의 환각 완화에 대한 관심 증가 등을 들 수 있다. 본 연구는 환각 연구 최신 동향을 파악함으로써 공학계는 물론 인문사회계 후속 연구의 토대가 될 것으로 기대한다.

생성 AI 스타트업에 대한 벤처투자 분석과 예측: 미국과 한국을 중심으로 (Analysis and Forecast of Venture Capital Investment on Generative AI Startups: Focusing on the U.S. and South Korea)

  • 이승아;정태현
    • 벤처창업연구
    • /
    • 제18권4호
    • /
    • pp.21-35
    • /
    • 2023
  • 생성 AI 기술의 막대한 파급력에 대한 기대가 산업계를 휩쓸고 있다. 생성 AI 기술의 활용과 발전에 창업생태계가 중요한 역할을 할 것으로 기대되는 만큼, 이 분야의 벤처투자 현황과 특성을 더 잘 이해하는 것도 중요하다. 본 연구는 생성 AI 기술과 창업생태계를 주도하는 미국을 비교 대상으로 삼아 한국의 벤처투자 내역을 분석하고 향후 벤처투자 금액을 예측한다. 분석을 위해서 미국의 117개 생성 AI 스타트업의 2008년부터 2023년까지 286건의 투자 내역과 한국의 42개 생성 AI 스타트업의 2011년부터 2023년까지 144건의 투자 내역을 수집하여 새로운 분석 자료를 구축했다. 분석 결과, 생성 AI 기업의 창업과 벤처 투자가 최근 들어 급증하고 있으며, 초기 투자에 절대다수의 투자 건이 집중됐다는 점이 미국과 한국에서 공통적으로 확인됐다. 양국의 차이점도 몇 가지 발견됐다. 미국의 경우 한국과는 다르게 같은 투자 단계에서 최근의 투자 규모가 그 이전보다 285%에서 488%까지 증가했다. 단계별 투자 소요 기간은 한국이 미국보다 다소 길었으나 그 차이가 통계적으로 유의하지는 않았다. 또한, 전체 벤처투자 금액 중 생성 AI 기업에 대한 투자 비중도 한국이 미국보다 높았다. 생성AI의 세부 분야별로는 미국은 텍스트와 모델 분야에 전체 투자액의 59.2%가 집중된 반면, 한국은 비디오, 이미지, 챗 기술에 전체 투자액의 61.9%가 집중돼 차이를 보였다. 2023년부터 2029년까지 한국의 생성 AI 기업에 대한 벤처 투자 예상 금액을 네 가지 다른 모델로 예측한 결과, 평균 3조 4,300억 원(최소 2조 4,085억 원, 최대 5조 919억 원)이 필요할 것으로 추정됐다. 본 연구는 미국과 한국의 생성 AI 기술 분야의 벤처투자를 다각도로 분석하고, 한국의 벤처투자 예상 금액을 제시하였다는 점에서 실무적 의의를 찾을 수 있다. 또한, 아직 학술적 연구가 충분하지 않은 생성AI 벤처투자에 대한 현황을 구체적 자료와 실증근거를 통해 분석함으로써 향후 깊이 있는 학술 연구의 토대를 제시한다는 점에서 학술적 의의가 있다. 본 연구에서는 벤처투자 금액 예측을 위한 방법 두 가지를 새롭게 개발하여 생성 AI의 향후 벤처투자 금액을 예측하는데 적용했다. 이 방법도 후속 학술 연구에서 다양한 분야로 확장·적용되고 정제된다면 벤처투자 예상 금액 예측 방법을 풍부하게 하는 데 공헌할 수 있을 것이다.

  • PDF