• Title/Summary/Keyword: 채널4

Search Result 2,878, Processing Time 0.028 seconds

Performance Improvement of Terrestrial DTV Receivers Using Frequency-domain Equalization (주파수 영역 등화를 이용한 지상파 DTV 수신 성능 개선)

  • Son Sang-Won;Kim Ji-Hyun;Kim Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.351-363
    • /
    • 2006
  • The 8-VSB modulation, the transmission standard for the terrestrial digital television(DTV) of the Advanced Television Systems Committee(ATSC), suffers from multipath fading because it conveys information on the amplitude. To solve this problem, decision feedback equalizers(DFE's) have been commonly used in terrestrial DTV receivers. However, under severe channels, such as a 0 dB ghost channel or a single frequency network (SFN) channel, the DFE shows unstable convergence due to the error propagation caused by decision errors. Instead of unstable time-domain DFE schemes, by proposing a frequency-domain direct-inversion equalization method, we try to guarantee stable equalization and achieve low symbol error rates. To secure the existence of a channel inverse, channel-matched filtering and noncausal filtering are carried out prior to equalization. Simulation results show that the proposed method performs much better than existing DFE schemes in terms of both the stability and the symbol error rate.

Characteristics of Compensation for WDM Transmission with Equally Spaced Channels using Mid-Span Spectral Inversion (채널 간격이 일정한 WDM 전송에서의 Mid-Span Spectral Inversion을 이용한 보상 특성)

  • 이성렬;임황빈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.619-626
    • /
    • 2004
  • In this paper, we investigated the compensation characteristics of distorted 16-channel WDM signal due to chromatic dispersion self phase modulation(SPM) and four-wave mixing(FWM). The bit rate and uniform frequency spacing of WDM channels are assumed to be 40 Gbps and 100 ㎓, respectively. The compensation method used in this approach is mid- span spectral inversion(MSSI), Highly-nonlinear dispersion shifted fiber(HNL-DSF) is used as a nonlinear medium of optical phase conjugator(On) in order to widely compensate WDM signal band. We confirmed that applying MSSI in WDM channels within special input power level compensates overall interferenced channels mainly due to FWM. But for long wavelength WDM channels having lower conjugated light power with respect to signal light power, compensation quality is deteriorated as dispersion coefficient of fiber becomes higher. Consequently, we confirmed that it is effective D apply MSSI with HNL-DSF as a nonlinear medium of OPC to WDM transmission link with relative small dispersion in order to compensate equally spaced WDM channels.

Impact of Channel Estimation Errors on SIC Performance of NOMA in 5G Systems (5G 시스템에서 비직교 다중접속의 SIC 성능에 대한 채널 추정 오류의 영향)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.9
    • /
    • pp.22-27
    • /
    • 2020
  • In the fifth generation (5G) networks, the mobile services require much faster connections than in the fourth generation (4G) mobile networks. Recently, as one of the promising 5G technologies, non-orthogonal multiple access (NOMA) has been drawing attention. In NOMA, the users share the frequency and time, so that the more users can be served simultaneously. NOMA has several superiorites over orthogonal multiple access (OMA) of long term evolution (LTE), such as higher system capacity and low transmission latency. In this paper, we investigate impact of channel estimation errors on successive interference cancellation (SIC) performance of NOMA. First, the closed-form expression of the bit-error rate (BER) with channel estimation errors is derived, And then the BER with channel estimation errors is compared to that with the perfect channel estimation. In addition, the signal-to-noise (SNR) loss due to channel estimation errors is analyzed.

Automatic Analysis of Gamma Ray Spectra for Surveillance of the Nuclear Fuel Integrity (핵연료 건전성 점검을 위한 감마선 스펙트럼의 자동 분석)

  • Cho, Joo-Hyun;Yu, Sung-Sik;Kim, Seong-Rae;Hah, Yung-Joon
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.555-561
    • /
    • 1994
  • The program of performing a fast and automatic analysis of gamma ray spectra obtained by a Multi-Channel Analyzer (MCA) is developed for the surveillance of the nuclear fuel integrity. The integrity of the nuclear fuel is confirmed by the measurement of the radiation level of the reactor coolant through the real time monitoring and the periodic sampling analysis. In Yonggwang nuclear power plane 3 and 4, the Process Radiation Monitoring System (PRMS), which is a real time monitoring system, provides a measure of the fuel integrity. Currently, its spectrometer channel can identify only one radionuclide at a time since the signal processing unit of the spectrometer channel is a Single Channel Analyzer (SCA). To improve the PRMS, it is necessary to substitute the MCA for the SCA The program is operated in a real time mode and an on-demand mode, and automatically performed for all procedures. The test results by using the National Bureau of Standards (NBS) mixed standard source are in good agreement with those from Canberra System 100 which is a commercial MCA Consequently, the developed program seems to be employed for automatic monitoring of gamma rays in nuclear power plants.

  • PDF

Performance Evaluation of the DRM+ System over Mutlipath Fading Channel Models Used in Band-II (Band-II 대역 다중경로 페이딩 채널에서 DRM+ 시스템의 성능 분석)

  • Park, Kyung-Won;Kim, Seong-Jun;Seo, Jeong-Wook;Lee, Youn-Sung;Jeon, Won-Gi
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • In this paper, the bit-error-ratio (BER) performances of Digital Radio Mondiale Plus (DRM+) system which stand for the European standard to bring analogue FM radio to digital radio in Band-II(30-170 MHz) are evaluated under multipath fading channel models used in Band-II and the adjacent channel interference (ACI) caused by FM signal. From the simulation results, the DRM+ system shows robust performances under time-varying channel environments even though the speed of a vehicle is equal to 300km/h. And it is shown that the frequency diversity, determined by delay spread of multipath fading channel, increases the coding gain of the DRM+ system with an increase of delay spread. In addition, to guarantee the BER performance of 10-4 for DRM+ system with ACI due to FM signal, the simulation results show that the desired signal-to-ACI power ratio must be more than -30 dB when the carrier frequency distance is 150 kHz.

Movement of Conduction Path for Electron Distribution in Channel of Double Gate MOSFET (DGMOSFET에서 채널내 전자분포에 따른 전도중심의 이동)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.805-811
    • /
    • 2012
  • In this paper, movement of conduction path has been analyzed for electron distribution in the channel of double gate(DG) MOSFET. The analytical potential distribution model of Poisson equation, validated in previous researches, has been used to analyze transport characteristics. DGMOSFETs have the adventage to be able to reduce short channel effects due to improvement for controllability of current by two gate voltages. Since short channel effects have been occurred in subthreshold region including threshold region, the analysis of transport characteristics in subthreshold region is very important. Also transport characteristics have been influenced on the deviation of electron distribution and conduction path. In this study, the influence of electron distribution on conduction path has been analyzed according to intensity and distribution of doping and channel dimension.

Implementation of Capacitance Measurement Equipment for Fault Diagnosis of Multi-channel Ultrasonic Probe (다중채널 초음파 프로브 고장진단을 위한 커패시턴스 측정 장치 구현)

  • Kang, Bub-Joo;Kim, Yang-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.175-184
    • /
    • 2016
  • In this paper, we propose the method to measure the capacitances using not LCR meter but capacitance to voltage(C/V) conversion. And we design the analog MUX circuits that convert 192 channels to 6 MUX channels in order to implement the diagnosis of multi-channel ultrasonic probe. This paper derives the conversion function that converts the digital voltage of each MUX channel to the capacitance using the least squares method because the circuit characteristics that convert the voltage of each MUX channel to the capacitance are different. The developed prototype illustrates the performance test results that the measure times are measured by within 4sec and the measure error rates of maximum, minimum, and average values are within 5% in terms of the repeated measurements of all 192 channels.

A Linear Precoding Technique for OFDM Systems with Cyclic Delay Diversity (순환 지연 다이버시티를 사용하는 OFDM 시스템을 위한 선형 프리코팅 기법)

  • Hui, Bing;Kim, Young-Bum;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.197-204
    • /
    • 2009
  • Cyclic delay diversity (CDD) is considered a simple approach to exploit the frequency diversity, to improve the system performance in orthogonal frequency division multiplexing (OFDM) systems. Also, the linear preceding technique can significantly improve the performance of communication systems by exploiting the channel state in formation (CSI). In order to achieve enhanced performance, we propose applying linear preceding to the conventional CDD-OFDM transmit diversity schemes over Rayleigh fading channels. The proposed scheme works effectively with the accurate CSI in time-division-duplex (TDD) OFDM systems with CDD, where the reciprocity is ass umed instead of channel state feedback. For a BER of $10^{-4}$ and the mobility of 3 km/h, simulation results show that a gain of 6 dB is achieved by the proposed scheme over both flat fading and Pedestrian A (Ped A) channels, compared to the conventional CDD-OFDM system. On the other hand, for a mobility of 120 km/h, a gain of 2.7 dB and 3.8 dB is achieved in flat fading and Vehicular A (Veh A) channels, respectively.

Design of Advanced PCM Encoder Architecture for Efficient Channel Information Memory Management (효율적인 채널 정보 메모리 관리를 위한 PCM 엔코더 설계)

  • Ro, Yun-Hee;Kim, Geon-Hee;Kim, Dong-Young;Kim, Bok-Ki;Lee, Nam-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.305-313
    • /
    • 2020
  • Telemetry system is a system that transmits status information data acquired from the aircraft to the ground station. PCM encoder needs memory to store channel information in order to generate a frame format using the acquired data. Generally, telemetry systems in large aircraft require much larger memory for the increased acquisition channel information due to the increased sensors and subsystems. However, they have difficulty to store all channel information in limited memory. In this paper, we suggests and implements an advanced PCM encoder that can efficiently manage memory by minimizing duplicated channel information. This novel PCM encoder allocates duplicated channel information to memory only once. And, sub commutation channels having different information for each minor frame are allocated to the memory by multiples of sub commutation channels. Finally, the suggested PCM encoder was proved by simulation that composed channels of various measurement cycles.

Channel Analysis of Wireless Sensor Networks (무선 센서 네트워크 채널 분석)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.179-186
    • /
    • 2008
  • In proportion as the growth of the wireless sensor network applications, we need for more accuracy wireless channel information. In the case of indoor or outdoor wireless sensor networks, multipath propagation causes severe problems in terms of fading. Therefore, a path-loss model for multipath environment is required to optimize communication systems. This paper deals with log-normal path loss modeling of the indoor 2.4 GHz channel. We measured variation of the received signal strength between the sender and receiver of which separation was increased from 1 to 30m. The path-loss exponent and the standard deviation of wireless channel were determined by fitting of the measured data. By using the PRR(Packet Reception Rate) of this model. Wireless sensor channel is defined CR(Connect Region), DR(Disconnected Region). In order to verify the characteristics of wireless channel, we performed simulations and experiments. We demonstrated that connection ranges are 24m in indoor, and 14m in outdoor.

  • PDF