• Title/Summary/Keyword: 창의설계 공학

Search Result 175, Processing Time 0.032 seconds

Thermal-Hydraulic, Structural Analysis and Design of Liquid Metal Target System (액체금속 표적 시스템의 열적, 구조적 건전성 평가 및 설계)

  • 이용석;정창현
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.294-298
    • /
    • 2001
  • A research for transmutation reactor is in progress to transmute high radioactive isotopes into low radioactive ones. In this study, thermal-hydraulic and structural analysis was performed to design liquid metal target system that would be used in subcritical transmutation reactor. Diffuse plate installation was considered to enhance cooling of window. And thermal-structural analysis of window was performed varying window thickness, beam power, and coolant flow rate to determine target system design valuers. It is ensured that maximum window temperature and stress would be acceptable in the design condition.

  • PDF

A Study on Creative Design and Practice using CPS(Creative Problem Solving) (CPS(Creative Problem Solving)를 활용한 창의적 설계 및 실습에 관한 연구)

  • Hong, Sung-Do;Huh, Yong-Jeong
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • This paper introduces a model of practice education for creative problem solving, using five steps on CPS. Learners can get the motivation about development of creative thinking and problem solving skill through the theory of CPS. Furthermore, they can apply problem solving skill to various problem. As a result of the study, the learners could realize the importance of the problem definition and the creative problem solving method. We proposed a guideline about five steps of CPS method and a method about idea evaluation. So, we established the education model about leaners can get the creative problem-solving skill more efficiently.

  • PDF

Development of Instruction Models for Creative Engineering Design on the Basis of Multi-Disciplinary Convergence (다학제간 융합 기반의 창의공학설계 수업모형 개발)

  • Kang, An-Na
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1118-1125
    • /
    • 2011
  • This paper is researched the methods of design instruction which can improve students' creativeness through the subject of creative engineering design as a required subject for the accredited engineering program. After studying the preference and problems of design tasks for the students of engineering college, a new education development plan for design process was suggested, which uses the existing design tasks in which creativeness improvement class was focused through the completion of structures. This was through the completion of structures that 'operating the most simple operation with the most complex mechanical mechanism', which uses Rube-Goldberg, the crystal of mechanical mechanism in the union of multi-disciplinary convergence curriculum.

Applied Practices on Codification Through Mapping Design Thinking Mechanism with Software Development Process (소프트웨어개발 프로세스와 디자인씽킹 메커니즘의 접목을 통한 코딩화 적용 사례)

  • Seo, Chae Yun;Kim, Jang Hwan;Kim, R.Young Chul
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.4
    • /
    • pp.107-116
    • /
    • 2021
  • In the 4th Industrial Revolution situation it is essential to need the high quality of software in diverse industrial areas. In particular current software centered schools attempt to educate the creative thinking based coding to non-major students and beginners of computer. But the problem is insufficient on the definition and idea of the creative thinking based software. In addition in a aspect of coding education for non-major and new students we recognize to have no relationship between creative thinking methods and coding. In other words we should give them how to practically code and design through learning the creative thinking. To solve this problem we propose the codification of design thinking mechanism without the knowledge of software engineering through mapping creative thinking with software development process. With this mechanism we may expect for students to have some coding ability with the creative design.

Exploring the Perception of Integrated STEAM Secondary Teachers on Engineering Design (융합 인재 교육 경험을 가진 중등 과학 교사들의 공학적 설계에 대한 인식 탐색)

  • Choi, Yunhee
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.364-378
    • /
    • 2021
  • This study explores the perception of Engineering Design of teachers who have long experience in the Integrated STEAM education. The teachers participating in this study were 12 elementary and secondary teachers with more than five years of experience in the Integrated STEAM Education. The study conducted semi-structured interviews. Interview questions focused on experiences of Integrated STEAM Education and recognition of Engineering Design, whether or not to reflect the curriculum of Engineering Design, and actual cases of Integrated STEAM Education with Engineering Design. As a result of this study, the teachers who participated in this study recognized that 'identification and coexistence of concepts for science, technology, and engineering' about Engineering Design, 'Creative design is possible when creativity is added to Engineering Design', 'Engineering Design is to analyze the economic feasibility and utility of the output created through the creative design process', 'Engineering Design is only for students who choose a career in science and engineering'. Based on this research, We need to establish and present correct concepts for science, technology, and engineering, and make an effort to include Engineering Design for solving scientific problems in the curriculum. In addition, we will have to develop and spread the Integrated STEAM Education program including Engineering Design and apply it in the field. Through this, we will have to find concrete action plans to improve the perception of science and engineering Integrated STEAM programs and Engineering Design among novice teachers and preservice teachers.

Engineering Design Education based on Three Essential Design Technology Factors (설계기술역량 3요소 기반의 공학설계 교육)

  • Cha, Sung-Woon;Kim, Dae-Eun;Lee, Soo-Hong;Lee, Kyung-Soo;Kim, Min-Soo
    • Journal of Engineering Education Research
    • /
    • v.10 no.4
    • /
    • pp.5-16
    • /
    • 2007
  • It is a fact that current engineering education is insufficient to cultivate engineers who can fulfill industrial demands. Engineering colleges and the government have expended much effort to develop new education model to overcome these shortcomings. The purpose of the present research is to formulate direction of engineering design education to cultivate talented engineers meeting engineering and industrial needs. We compared and analyzed Creative Design Project (3) (a core subject in engineering design) from the feedback of practising engineers, professors and students based on essential design technology factors and the educational achievement contents of ABEEK. The three essential factors of design technology which are prerequisites for the designers to implement design work were selected by surveying experts in the field of device design of cellular phone company. Moreover, educational purpose of the professors, educational achievement of the students, and educational direction of industry needs are deduced based on the three factors. It is also ascertained that Creative Design Project (3) meets most of the requirements of industrial design field by comparing and analyzing deduced results.

Case Study on Engineering Camp Program involving Engineering Design Activity and Intra-/Inter-Team Works for High School Students: Plant factory as main theme (공학설계활동과 팀 내, 팀 간 협력 기반 고등학생 공학 캠프 프로그램 운영 사례: 식물공장을 주제로)

  • Cho, Kyung-Suk
    • Journal of Engineering Education Research
    • /
    • v.18 no.3
    • /
    • pp.46-58
    • /
    • 2015
  • Informal engineering education program for high school students was developed to cultivate engineering literacy using the human resources and facilities of university. Plant factory, a smart farming technology, was selected as a main theme, and the novel engineering camp program involving engineering design activities and intra-linter-team works was planned. The camp program was applied to 38 high school students in an active learning classroom. Five teams were constructed according to elemental technologies such as biotechnology, information-communication technology, energy engineering, mechanical engineering and architectural engineering, and the students were participated in intra- and inter-team activities to achieve the final goal of 'the construction of a plant factory in school'. The team works were conducted according to the eight steps of engineering design process (identifying the problem and need, identifying criteria and constraints, brainstorming possible solutions, selecting the best possible solution, constructing a prototype, testing and evaluating the solution, communicating the solution, and refining design). Participants' satisfaction survey showed that the satisfaction on the contents of engineering design was 4.48 on 5-point Likert scale. The participants' satisfaction on creative activity and systematic methodology was 4.43 on 5-point Likert scale. 97% of participants responded positively to team works, and 92% of participants were satisfied with career mentoring activity supplied by undergraduate/graduate students. These results indicates that the engineering camp program involving engineering design activity and intra-/inter-team works can contribute to cultivate engineering literacy such as creativity, problem solving ability, collaboration, communication skills for high school students, and to increase their interests in engineering fields.

Present Situation and Student Satisfaction of Engineering Capstone Design Course in Engineering Colleges of Korea (공학대학 캡스톤 디자인(창의적 공학 설계) 교육과정 운영실태 및 학습 만족도 조사)

  • Lee, Tai-Sik;Jun, Young-Joon;Lee, Dong-Wook;Chang, Byung-Chul
    • Journal of Engineering Education Research
    • /
    • v.12 no.2
    • /
    • pp.36-50
    • /
    • 2009
  • The Capstone Design courses in the final academic year of undergraduate engineering education provide students with a realistic design experience in which they can integrate and capitalize on the basic disciplinary material they have learned during their engineering program to synthesize a new product, device or process. The objective of this study is to assess the student satisfaction of Capstone Design courses. This paper briefly describes the history, administration and implementation of the Capstone Design courses in engineering colleges of Korea. It highlights the weaknesses of the Capstone Design courses and suggests improvements. To investigate the student satisfaction questionnaire was surveyed.

The development of an Instrument for Measuring the Creative Engineering Problems Solving Propensity for STEAM (융합인재교육(STEAM)을 위한 창의적 공학문제해결 성향 검사 도구 개발)

  • Kang, Ju-Won;Nam, Younkyeong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.3
    • /
    • pp.276-291
    • /
    • 2016
  • This study is to develop a valid and reliable instrument for measuring students' creative engineering problem solving propensity. The creative engineering problem solving is operationally defined in this study as a creative problem solving skill in an engineering context. To develop the instrument, first we define seven common constructs between engineering problem solving skill and creative problem solving skill through an intensive literature review; motivation, context, personal character, engineering design, engienering habits of mind, understandings of engineering and engineers, communication skill, and collaboration skill. Based on the seven constructs and the face validity test conducted by two in-service science teachers and 4 experts in science education research, 40 preliminary items were developed. Then the preliminary instrument was implemented in a science gifted highschool to measure the reliability of the instrument. From the 40 items, 34 items were selected through the initial reliability test by Cronbach's ${\alpha}$(>.75). Finally through the three times of factor analysis process, 28 items in five construct categories were selected; motivation (3 items), engineering design (6 items), engineering habits of mind (9 items), understandings of engineering and engineers (4 items), communication and collaboration skill (6 items). The factor analysis result showed that the reliability of each construct category was between .733 to .892., meaning that the instrument is reliable in terms of the higher structural validity (each item is categorized in an appropriate construct category). We expect that the creative engineering problem solving propensity instrument developed in this study can be used in various contexts for STEAM education research as a reliable and valid instrument.

Development of a New Design Course to Apply Problem Based Learning in Mechanical Engineering: Product Dissection and Design Reasoning (기계공학에서의 PBL적용 교과과정 개발: 제품해체 설계추론)

  • Hwang Sung-Ho;Kwon Oh-Chae;Kim Yong-Se
    • Journal of Engineering Education Research
    • /
    • v.8 no.1
    • /
    • pp.20-30
    • /
    • 2005
  • Recently, a new education paradigm 'Self-directed Learning' has attracted considerable attention. Problem-Based Learning (PBL) has been recognized as methodology to help students expand scientific thinking and knowledge. improve applicability, develope critical knowledge, and creatively solve problems. There have been significant efforts to develope PBL-based courses in mechanical engineering. A new PBL-based, multi-disciplinary course 'Product Dissection and Design Reasoning' has been developed in this paper. The course examines the way in which products and machines work and is intended to show freshman or sophomore level students how fundamental physical principles relate to engineering practice through hands-on dissection experience : thus, the course emphasizes the importance of knowledge of the fundamental physics for design reasoning. The primary role of this course is to develop creative design manpower. This paper describes the philosophy and content of this course and presents results from one year of development.