• Title/Summary/Keyword: 차음손실

Search Result 93, Processing Time 0.023 seconds

Effects of Boundary Damping in the Prediction of Sound Insulation Performance of the Double Partition with Air-gap (중공 이중판의 차음손실 예측에 있어서 경계손실이 미치는 영향)

  • 이종화;이정권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.873-876
    • /
    • 2002
  • It has been reported that discrepancies exist in the case of double panels with an air layer when the measured sound transmission loss is compared with the calculated values. It has been known that the cause of this discrepancy is in major from the unavoidable dips associated with the double wall resonances. In this work, several correction methods to make up for such resonances are studied. In particular, the ‘boundary damping’concept is revisited and its effects are discussed by comparing with measured values. It is shown that the correction methods are necessary for the sound insulation analysis of double partitions with an air layer, in order to ascertain the quantitative correlation between measured and predicted values.

  • PDF

Comparison of Sound Transmission through Single and Double-layer Polymer Panels (폴리머계 단일 및 이중구조 방음패널의 차음특성 비교분석)

  • Kim, Il-Ho;Lee, Ju Haeng;Son, Jin-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.597-603
    • /
    • 2014
  • The aim of the present study is to compare sound performance depending on thickness, materials, and structure of polymer soundproof panels consisting of PC, PMMA, HDPE, and PP, respectively. As a result of comparing sound transmission loss (STL) of single layer panel made of four types of polymer, the better sound transmission loss was obtained in order of PC, PMMA, HDPE, and PP, which was obviously followed mass law. 8 mm of single panel showed 5~6 dB(A) greater STL than that of 4 mm panels and lower frequency for coincidence effect so that STL of 8 mm panels decreased around 4,000~5,000 Hz, indicating less STL of 4 mm panels than those of 8 mm. When it comes to structure, 4 mm panels with air layer appeared similar value of STL with 8 mm single panels under 300 Hz. In range of high frequency above 2,000 Hz, 4 mm panels with air layer performed better than 8 mm of single layer panel while resonance effects were observed at 500~630 Hz. It was found that these results could be practically utilized as fundamental data for noise barriers design considering the change to each condition.

Sound Insulation Performance of Honeycomb Composite Panel for a Tilting Train (틸팅 열차용 허니콤 복합 적층재의 차음성능)

  • Kim, Seock-Hyun;Seo, Tae-Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1931-1936
    • /
    • 2010
  • In Korean tilting trains, honeycomb composite panels are used for high speed and light weight. The side wall of a tilting train consists of an aluminum honeycomb coated with carbon-fiber-reinforced epoxy skin and a nomex honeycomb panel as the main structure, with glass wool inserted between the panels. In this study, based on ASTM E2249-02, we measure the intensity sound transmission loss (TL) of the honeycomb composite panels. Using mass law deviation (MLD), we estimate the sound insulation performance of the honeycomb composite panels in terms of their weight and explore the feasibility of substituting a conventional corrugated steel panel. The transmission-loss data of the honeycomb composite panels obtained in the study will be used to establish noise-reduction measures for train compartments.

Prediction of Isolation Performance of Multi-Layered Sound Barrier System Using the Sound Pressure Radiated by Point Impact (점가진력에 의해 방사된 읍압을 이용한 다중 적층 흡차음 시스템의 차음 성능 예측)

  • 김정수;신재성;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1081-1085
    • /
    • 2002
  • A modeling is developed to predict the isolation performance of sound barrier systems under the sound pressure radiated from excited by point impact. The predicted results are compared with the measured results obtained by using APAMAT II. This instrument provides a combination of structure-borne noise and air-borne noise, which corresponds to rolling noise, by applying the excitation system projected steel balls against the steel sheet.

  • PDF

A Method of Analysis to Predict Sound Transmission Loss of an Extruded Aluminum Panel for Use on Railway Vehicles (철도차량용 알루미늄 압출재의 음향 투과손실 예측에 관한 연구)

  • Kim, Kwanju;Lee, Jun-Heon;Kim, Dae-Yong;Kim, Seock-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • The frame elements of modern high speed trains are typically fabricated with extruded aluminum panels. However, the sound transmission loss (STL) of extruded aluminum panels is less satisfactory than flat panels with the same surface density. This study proposes a method for prediction of the sound transmission loss of extruded aluminum panels using finite element analysis. The panel is modeled by finite element analysis, and the STL is calculated using a measure of Sommerfeld radiation at the specimen surface, boundary conditions, and the internal loss factor of the material. In order to verify the validity of the predicted value, intensity transmission loss was measured on the aluminum specimen according to ASTM E2249-02. The proposed method of analysis will be utilized to predict the sound insulation performance of extruded aluminum panels for railway vehicles in the design stage, and to establish measures for their improvement.

Acoustic Loads Reduction of Composite Plates for Nose Fairing Structure (노즈 페어링 구조용 복합재 평판의 음향 하중 저감 특성)

  • 박순홍;공철원;장영순;이영무
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.15-22
    • /
    • 2004
  • Acoustic load generated by rocket propulsion system is one of major dynamic loads during lift-off phase so that it causes the structural failure and electronic malfunction of payloads. Acoustic loads can be greatly reduced by an appropriate acoustical design of nose faring structures. This paper deals with the acoustical design of the nose fairing structure for launch vehicle. It is well known that a honeycomb sandwich structure is a poor sound insulator because of its high specific stiffness. In this paper, the sound transmission characteristics of four kinds of honeycomb structures for noise fairing were investigated by means of numerical and experimental ways. In order to estimate transmission loss, infinite plate theory by Moore and Lyon and statistical energy analysis (SEA) method were used. The predicted results showed a good agreement with measured ones. These enabled us to determine a proper core material for nose fairing, which shows good sound insulation performance per weight.

A Study on the Acoustic Absorption Panel by the Theory of Resonator (공명 원리를 이용한 흡음벽에 관한 연구)

  • Yu, Young-Hun;Yi, Jong-Keun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.125-129
    • /
    • 2006
  • It is very important to remove the noise levels made by an electric home appliance and machines they are located in the auditory region. The noise of ship engine room is known as it is not easy to lower so the working environment of the engine room is the worst condition because the improvement for the noise seemed insignificant and the hearing loss is occurred. As the monitoring equipment and an intelligent control system are improved rapidly the main engine of the ship can be enclosed with an acoustic barrier and any other absorbtion equipment. In this study, the sound absorbtion barrier is experimentally researched by change the volume and the length of the neck for the Helmholtz resonator as the resonator can absorb the noise effectively.

  • PDF

Measurement of Transmission Loss Using Surface Intensity Method in Building Elements (표면 인텐시티법을 이용한 건물부위의 음향투과손실 측정)

  • Kim, Heung-Sik;Son, Jang-Yeol;O, Jae-Eung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.17-22
    • /
    • 1987
  • This study is to propose more reliable test method in evaluating the sound insulation performance of building element in fields. This method involves the measurements of the incident acoustic intensity and transmitted surface intensity. The incident intensity is determined from measurements of the space averaged sound pressure level in source room. The transmitted surface intensity is measured directly using one microphone and one accelerometer. The results of experiments indicate that this new method makes it possible to give more reliable data than the conventional field test method. The values of trans-mission loss measured by this new method are compared favorably with those obtained using the sound intensity method and theoretical calculation(mass law).

  • PDF

Analysis of the Polymer Properties and Sound Characteristics of Interlayer Films for Laminated Glass (접합유리용 고분자 필름의 물성 및 음향학적 특성 분석)

  • Ko, Sangwon;Hong, Jiyoung;Sunwoo, Yerim;Kim, Young Jun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • To improve the sound insulation performance of laminated glass in high speed trains, it is beneficial to study the relationship between the characteristics of interlayer films and the acoustical performance. In addition to those of conventional PVB (polyvinyl butyral), the dynamic mechanical properties of PVB derivatives and PC (polycarbonate), which are candidates for interlayer films, were analyzed. We assumed that PVB-HEMU, which has a glass transition temperature ($T_g$) around room temperature and a large tan ${\delta}$ (loss tangent) value, can be made to damp efficiently. The damping capability was tested utilizing sound transmission loss measurement and simulation under the identical structure of laminated glass in high speed trains. We also built a database for analysis of relations between interlayer film characteristics and acoustical performance; this was followed by the determination of sound transmission loss using the intensity technique and FEA.

A study on the sound insulation performance of damping sheet attached to the train wall (철도차량벽체의 차음 성능에 대한 제진시트의 영향 고찰)

  • Seo, Dae-Hoon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.97-100
    • /
    • 2007
  • This study deals with the sound insulation performance of the damping sheet, which is widely used in a train. The wall of train is assumed to be a plate made of steel and two damping sheets. In case of damping sheet only, the sound transmission loss follows the mass law. If a steel plate is attached to damping sheet, the transmission loss is found to be higher than single of only steel plate, as we can anticipated, about $3{\sim}5$ dB. This is very well known consequence that is because the density of area increases. However, the increase of the transmission loss is not higher than what we can expect by the mass law. That's because the steel is perfectly blocked from the transmission of the air ; There is no defect in that material.

  • PDF