• Title/Summary/Keyword: 차안

Search Result 382, Processing Time 0.019 seconds

Car-to-Car Offset Frontal Impact Modeling using Spring-Mass Model (Spring-Mass 모델을 이용한 차대차 부분정면충돌 모델링)

  • Lim, Jaemoon;Lee, Kwangwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2016
  • The objective of this study was to construct the spring-mass models for the car-to-car offset frontal impact crash. The SISAME software was utilized to extract the spring-mass models using the data from the offset frontal crash test. The spring-mass model of the passenger car could effectively approximate the crash characteristics for the offset frontal barrier impact and the car-to-car offset frontal impact scenarios.

Study on Utilization of Digital Tacho Graph in Construction Machinery Information Systemm (건설기계 정보화시스템 구축을 위한 운행기록장치 활용방안)

  • Yoon, Janet;Lee, Seung-Cheol
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.17-23
    • /
    • 2016
  • Construction of our machine "Digital Tacho Graph" toghether with development and intergrated management system information is attached under Traffic Safety Law in article submission. This machine "Digital Tach Graph" has been mandated on a priority basis. The entire machine is constructed with specialised components to collect data that can retrive basic information. To obtain the components to perfect the information to optimize the device and system.

An Optimal Design of a Pedestrian Safety System Using a Design Scenario (설계방법론을 이용한 보행자 보호 시스템의 최적설계)

  • Yun, Yong Won;Park, Gyung Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1019-1027
    • /
    • 2014
  • Vehicle-into-pedestrian traffic accidents show a very high mortality rate compared to their frequency of occurrence. Throughout the world, governments and insurance companies tend to establish and implement new safety standards for pedestrian protection. In order to improve the performance of pedestrian protection, the Korean government has evaluated the pedestrian safety of vehicles under the Korea New Car Assessment Program (K-NCAP) since 2007. The pedestrian protection performance has improved gradually, but it remains insufficient. A pedestrian protection system consisting of a hood lift system and a pedestrian airbag can be a solution to pedestrian safety. A pedestrian airbag design procedure based on a newly defined design scenario is introduced to reduce the head injury criterion of pedestrians. The proposed design scenario is discussed from a practical viewpoint and applied to manufacture pedestrian protection systems.

Statistical Review for USNCAP Front Crash Test Results in MY2011 (2011년 모델에 대한 정면 미국신차안전도평가 결과에 대한 통계적 분석)

  • Beom, Hyen-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.81-87
    • /
    • 2012
  • New car assessment program (NCAP) originated from USNCAP in 1979 has been implemented in several countries or markets, for instance USA, Europe, Korea, Japan, China and Australia. NCAP has contributed greatly to reduce accidental tolls. But recently, NCAP performance has no distinction between cars because manufacturer have been continuously developed to improve NCAP performance. Therefore, NHTSA announced new USNCAP protocol becoming effective from MY2011. NHTSA had carried out many NCAP tests based on the new test protocol and announced these test results. In this paper, USNCAP test results were reviewed by statistical method. This review was focused on passenger cars and frontal crash test results in order to investigate effect of changes in new NCAP protocol. There are two key changes, one is sited female dummy in passenger position, the other is enlarged to 4 scoring body regions in each dummy. Results of this review were summarized as followings. Performance in Passenger (12.5%) is lower than Driver's (50%) for number of 5 star vehicle. Neck injury criterion is dominant to NCAP star rating for both dummies in the mean sense. For standard deviation, chest deflection is showed largest value in driver dummy but neck injury criterion is showed for passenger's. DKAB and PKAB were equipped 28.1% and 6.2%, respectively. Consequently, the countermeasure for new USNCAP frontal crash test is essential to control well dummy kinematics with some safety features including KAB to reduce neck injuries.

Statistical Review for New USNCAP Side Crash Test Results (새로운 미국 측면 신차안전도평가 결과에 대한 통계적 분석)

  • Beom, Hyenkyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.104-113
    • /
    • 2013
  • New USNCAP has been carried out by NHTSA including front and side crash from MY2011. In this paper, test results for USNCAP Side crash were reviewed by statistical analysis. This review focused on side crash test results to investigate the effect of changes from new USNCAP side crash test protocol among 30 passenger cars. These results were summarized as followings. Total number of 5 star vehicles on the front seat dummy (16 vehicles, 53.3%) was slightly smaller than the rear seat's (17 vehicles, 56.7%) in MDB test. For the ES-2re dummy, chest injury, ie maximum rib deflection contributed to 66% in the mean value of $P_{joint}$. Pelvis injury was highly dependent upon performance up to 87% in the SID-IIs dummy cited on the rear seat in average $P_{joint}$. For Pole test, pelvis injury made contribution to the average performance to 83%. For standard deviation, it showed the largest value in the same body region as the mean value for each dummy. Overall front seat performance showed 14 vehicles, 44.6% with 5 star vehicles less than each MDB or Pole test result. This result showed that performances in MDB test were different pattern to Pole test on driver position. Number of 5star vehicles for overall side NCAP performance are 18 passenger cars (60%). Curtain airbag and driver thorax airbag were equipped in all test vehicles. One vehicle is equipped with thorax airbag in the rear seat. Results from two side tests considered as reliability problem, ie the cause for large standard deviation in side crash test. Consequently, the countermeasure for new USNCAP side crash test is essential to design the effective side structures for side collision and to control well dummy kinematics with curtain and thorax airbag in order to reduce chest and pelvis injuries.

The Study on control factor of WorldSID 50%ile dummy injury through AE-MDB side crash test (AE-MDB 측면 충돌 시험 시 WorldSID 50%ile dummy 상해치에 대한 제어인자 연구)

  • Hongyul Sun;Pyokyong Han;Jaesu Kim;Kiseok Kim;Ilsung Yoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.5-9
    • /
    • 2014
  • Over the past ten years, since the introduction of the side crash test regulation in Europe, much research work has been performed internationally to develop new and modified test procedures to improve the level of occupant protection offered by vehicles in side crash test. This research has been co-ordinated and finally contributed to development of an AE-MDB(Advanced European Moving Deformable Barrier) and WorldSID (Worldwide Side Impact Dummy). EuroNCAP(European New Car Assessment Program) has the plan to conduct AE-MDB side crash test using WorldSID from 2015 by replacing Progressive MDB and EuroSID II. Automobile manufacturers need to respond to these changes closely. This paper is to find dominant control factor and analyze it of WorldSID 50%ile dummy injury through AE-MDB side crash test by predicting best and worst condition. And control factors will be validated within EuroNCAP regulations. This paper is analyzed by DFSS(Design for six sigma) which contains 5 control factors and is evaluated by ANOVA with the data as a result of LS-DYNA analysis correlated with crash pulse from 50 kph AE-MDB side crash test using WorldSID 50%ile dummy.

Light Weighted Design of Aluminum Bumper Backbeam by Rib Shape Change (리브 형상 변경에 의한 알루미늄 범퍼 백빔의 경량화 설계)

  • Kang, Sungjong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.6-12
    • /
    • 2018
  • Optimized section shape of aluminum bumper backbeam for enhancing the front high speed crashworthiness was investigated. Front body analysis model of a convertible vehicle was built up and parameter studies were carried out with changing the inner rib shape and the section thickness distribution. First an inner rib shape displaying most efficient structural performance was selected. Next, for the selected section the effect of section thickness combination was examined. Also, a light weighed backbeam section displaying crash performance over the current design was suggested. Finally RCAR front low speed impact analyses were carried out for the optimized models.

A Study on Maximum Power Measurement Method for NOVC-type Hybrid Electric Vehicle (NOVC형식 하이브리드 자동차의 최고 출력측정방법 연구)

  • Kim, Joowon;Yong, Geejoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.36-42
    • /
    • 2018
  • UNECE/WP29/GRPE/EVE has recently defined that the power of a hybrid electric vehicle is the system power. Although a method for measuring the maximum power of a hybrid electric vehicle is presented by KATRI, it does not consider charging and discharging characteristics of traction batteries. This study provides a maximum power measurement method which reflects the charging and discharging characteristics of traction batteries in NOVC-HEVs (Not Off Vehicle Charging-Hybrid Electric Vehicles). Both methods are compared with regard to the output measurement results.

A Consideration on the Inspection Frequency of the Periodic Technical Vehicle Inspection (자동차 정기검사 주기에 관한 고찰)

  • Lim, J.M.;Jung, Y.D.;Yeo, U.S.;Kang, B.D.;Youn, Y.H.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.17-21
    • /
    • 2012
  • The periodic technical vehicle inspection is to prevent the accident through the finding and fixing the defects of the vehicle. The periodic technical vehicle inspection in Korea was studied for assessing the adequacy of the inspection frequency. The inspection frequencies of many countries including EU, USA and Japan were compared. The average mileages by the vehicle usage and type were represented. The warranty period and recommended replacement period of parts of the domestic auto makers was studied. Currently, the inspection frequency for the periodic technical vehicle inspection in Korea is appropriate. The pass-fail rate and the cost-benefit analysis for the periodic technical inspection in Korea will be needed in the decision making process for the inspection frequency.

A Consideration on the Head Injury Criterion of KNCAP (KNCAP 머리상해기준값에 관한 고찰)

  • Lim, J.M.;Lee, K.W.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.22-26
    • /
    • 2012
  • Prasad and Mertz published head injury risk curves for skull fracture and for Abbreviated Injury Scale (AIS) ${\geq}4$ brain injury due to forehead impacts based on the 15 ms HIC criterion. KNCAP adopted the HIC36 criterion for the male dummy and the HIC15 criterion for the female dummy. In this paper, it was studied that which of the HIC15 and HIC36 was more effective for the male dummy head injury evaluation. The frontal US-NCAP data for the 7 vehicles from the NHTSA test database were used to evaluate the head injuries. In the case of using the HIC15 and evaluation range 250~700, the discrimination of the rating for the occupant head injury was increased.