• Title/Summary/Keyword: 차수효과

Search Result 278, Processing Time 0.027 seconds

A Numerical Study on the Transport of Soluble Contaminants in Porous Grounds (다공성 지하에서 수용성 오염물의 이동에 관한 수치적 연구)

  • 윤도영;김민찬
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.06a
    • /
    • pp.33-37
    • /
    • 1998
  • 본 연구에서는 다공성 지하에서 침출수에 지하 환경의 오염 및 대처 방안의 효과를 수치적으로 예측하였다. 연구대상으고 매립지 지하에서의 침출수의 흐름은 Darcy 법칙을 사용하여 해석하였고, 오염물질의 이동은 이산-분산 모델에 수착의 효과를 고려하여 해석하였다. 침출수의 흐름 및 오염물질의 이동 방정식을 2차원 계를 대상으로 하여 Galerkin유한 요소법을 사용하였다. 수치해석 결과 침출수의 흐름은 매립지 제방 근처에서 강하게 일어나는 것으로 나타났다. 연직 차수막은 오염물질의 이동을 막는데 별 도움을 주지 못하나, 수착은 오염물질의 이동을 지연시키는데 상당한 효과가 있는 것으로 보인다.

  • PDF

Effect of a Frontal Impermeable Layer on the Excess Slurry Pressure during the Shield Tunnelling (전방 차수층이 쉴드터널 초과 이수압에 미치는 영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1199-1213
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, but low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. As results, larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0~1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

  • PDF

Numerical study on structural reinforced effects of concrete lining by spray-applied waterproofing membrane (차수용 박층 멤브레인 설치에 따른 콘크리트 라이닝의 구조적 보강효과에 관한 수치해석 연구)

  • Lee, Chulho;Lee, Kicheol;Kim, Dongwook;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.551-565
    • /
    • 2017
  • A spray-applied waterproofing membrane which consists of polymers has a relatively higher constructability and adhesion than the conventional sheet-type waterproofing materials. Additionally, the spray-applied waterproofing membrane generally shows a waterproofing ability as a composite structure with shotcrete or concrete lining. Because its purpose is waterproofing at the structure, structural effects were not well reported than waterproofing abilities. In this study, structural effects of the membrane-attached concrete lining were evaluated using 3-point bending test by the numerical method. From the analysis, a load-displacement behavior of the concrete lining and fracturing energy after yielding were compared with various conditions. Consequently, concrete lining with spray-applied waterproofing membrane shows higher flexural strength and fracturing energy than the single-layer concrete lining.

A Study on the Grouting Effect of Ultrafine Cement in Rock Ground (초미립자 시멘트의 암반지반 그라우팅 주입효과에 관한 연구)

  • An, Jun-Hee;Park, Choon-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.279-286
    • /
    • 2018
  • The grouting method is to reinforce the ground by injecting the chemical solution for the strengthening of the ground. Cement grouting material has usually used portland cement for centuries ago, but the cement particle size is large and the injection effect is limited. This study analyzes the effect of ultrafine cement grouting in rock ground using 3S-1 grouting in rock ground and ordinary Portland cement (OPC). The results of tests were compared and analyzed from the Lugeon test, bore loading test (P.M.T.), and injection (P-Q) test. The use of ultrafine cement (3S-1) had a higher effect (K, 10-6cm/sec) than OPC. The reinforcement effect of 3S-1 was also confirmed. Ultrafine cement (3S-1) was 4~9 times more injectable than OPC. Therefore, it is more advantageous to use ultrafine cement (3S-1) than OPC.

Groundwater Flow Analysis During Excavation for Underground Tunnel Construction (지하 터널 건설을 위한 굴착 시 지하수 유동 분석)

  • Sungyeol Lee;Wonjin Baek;Jinyoung Kim;Changsung Jeong;Jaemo Kang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.19-24
    • /
    • 2024
  • Urban densification has necessitated the development of subterranean spaces such as subway networks and underground tunnels to facilitate the dispersal and movement of populations. Development of these underground spaces requires excavation from the ground surface, which can induce groundwater flow and potentially lead to ground subsidence and sinkholes, damaging structures. To mitigate these risks, it is essential to model groundwater flow prior to construction, analyze its characteristics, and predict potential groundwater discharge during excavation. In this study, we collected meteorological, topographical, and soil conditions data for the city of ○○, where tunnel construction was planned. Using the Visual MODFLOW program, we modeled the groundwater flow. Excavation sections were set as drainage points to monitor groundwater discharge during the excavation process, and the effectiveness of seepage control measures was assessed. The model was validated by comparing measured groundwater levels with those predicted by the model, yielding a coefficient of determination of 0.87. Our findings indicate that groundwater discharge is most significant at the beginning of the excavation. Additionally, the presence of seepage barriers was found to reduce groundwater discharge by approximately 59%.

A study on using the lime sludge as a sanitary landfill liner (위생매립지 차수재로써의 부산석회 이용에 관한 연구)

  • 구자공;도남영;임재신;이상민;김남돈
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.149-161
    • /
    • 1999
  • In this study, to examine the applicability of the lime sludge as a landfill liner, 1) the geoechnical characteristics of sludge, 2) the characteristics of migrations of contaminants, and 3) the characteristic of leaching in the batch leaching test are investigated As a result, the hydraulic conductivity(K) of the lime sludge was found out to have 10 times lower hydraulic conductivity than the maximum allowable hydraulic conductivity of the liner Retardations of heavy metals(Cu, Pb) were found out to be higher than that of organic(phenol) due to the high pH(>11.0) of 4he lime sludge. As a result of the leaching test. the concentrations of Pb and Cu were found to be close to allowable limitation, so that they need to be kept in constant watch.

  • PDF

A Study on Durability and Impermeability of Environmentally Friendly Inorganic Ground Injection Material (환경 친화적인 무기질계 지반주입재의 내구성 및 차수효과에 관한 연구)

  • Chun, Byungsik;Kang, Hyoungnam;Do, Jongnam;Lim, Jooheon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.113-119
    • /
    • 2006
  • Recently, the ground injection method using water glasses as one of the main resources and the products of these constructions have basic problems in terms of the method of constructions for the permanent foundation reinforcement and stopping leakage of water because they have some serious problems such as durability, compressive strength, injectant eluviation and so forth even though they are still used to stop leakage of water in the temporary structures. The purpose of this study is to demonstrate the strength characteristic and environment friendliness of NDS method by unconfined compressive strenth test, permeability test, length change test, leaching test, and assessment of environmental impact in comparison water glass type material. The test results show that NDS method has significant improvement of strength, permeability, volume change, and leaching. An assessment of environmental impact also demonstrates that the NDS material is environmentally friendly.

  • PDF

Numerical Study on Direct Shear Test of Composite Shotcrete with Sprayable Waterproofing Membrane (차수용 박층 멤브레인의 직접전단실험에 관한 수치해석 연구)

  • Lee, Kicheol;Choi, Soon-Wook;Kim, Dongwook;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.189-197
    • /
    • 2018
  • A sprayable waterproofing membrane which has relatively high adhesive property onto concrete enables faster construction with better waterproof performance compared with a conventional sheet membrane. However, the sprayable waterproofing membrane is a recently developed material and its performance and behavior with structures are not sufficiently reported. Therefore, in this study, the shear behavior of sprayable waterproofing membrane was numerically analyzed using the results of previous studies of composite shotcrete with sprayable waterproofing membrane. From the previous study, shear behavior of shotcrete with sprayable waterproofing membrane was different from shotcrete case and there was a limitation to express the behavior of the interface in general shear strength method. Therefore, in this study, the direct shear test was numerically simulated using two contact models, and then the best suitable method to express the shear behavior of the sprayable waterproofing membrane was suggested.

The Purification Characteristics of Reactive Soil-Bentonite Landfill Liner (혼합반응 차수재의 오염정화특성)

  • 김학문
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.398-403
    • /
    • 2003
  • The purpose of this paper is to investigate purification characteristic of soil-bentonite landfill liner and to develop a desirable liner system. In order to clarify the purification characteristics, high pressure column tests using soil-bentonite, reactive soil-bentonite and reactive bentomat were carried out in the presence of water and leachate. The test results indicated that the significant amount of NH$_3$-N, Pb and Cu was removed through the reactive soil-bentonite liner system.

  • PDF

Assessment of Levee Safety Using Electrical Surveys (하천제방의 안전성 평가를 위한 전기비저항탐사)

  • Yoon, Jong-Ryeol;Kim, Jin-Man;Choi, Bong-Hyuck
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.53-61
    • /
    • 2005
  • 2-D and 3-D resistivity surveys were carried out at the Deok-In2 levee during the period of arid and rainy seasons to assess the waterproof effectiveness of sheet pile and routing sections and detect the location of pipings. Inverted resistivity sections clearly indicated the boundaries of sheet pile and grouting sections and the locations of pipings observed at the ground surface. It is necessary that proper survey parameters are determined considering inverted depth and resolution and contacting resistance is decreased to obtain favorable result.

  • PDF