• Title/Summary/Keyword: 차선 이탈

Search Result 83, Processing Time 0.028 seconds

Implementation of Lane Departure Warning System using Lightweight Deep Learning based on VGG-13 (VGG-13 기반의 경량화된 딥러닝 기법을 이용한 차선 이탈 경고 시스템 구현)

  • Kang, Hyunwoo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.860-867
    • /
    • 2021
  • Lane detection is important technology for implementing ADAS or autonomous driving. Although edge detection has been typically used for the lane detection however, false detections occur frequently. To improve this problem, a deep learning based lane detection algorithm is proposed in this paper. This algorithm is mounted on an ARM-based embedded system to implement a LDW(lane departure warning). Since the embedded environment lacks computing power, the VGG-11, a lightweight model based on VGG-13, has been proposed. In order to evaluate the performance of the LDW, the test was conducted according to the test scenario of NHTSA.

An Analytical Study of the Effect of Inclined Angle of Road on Turn-over Accident of a High-speed Coach running on a Curved Road under Cross-wind Condition (횡풍이 작용하는 속도로의 회전구간에서 도로의 편경사각이 주행차량의 전복사고에 미치는 영향에 관한 분석연구)

  • Park, Hyeong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.373-381
    • /
    • 2017
  • Kyeonggi Provincial Government is considering double decker bus service to solve the problem of heavy rush hour traffic. However, the height-to-width ratio is more than 1.16 times larger than that of a general high-speed single decker bus, and the center of gravity is higher. This could cause driving stability problems, such as turnover and breakaway from the lane, especially under strong side-wind conditions at high speed. In this numerical study, the driving characteristics of a model double decker bus were reviewed under side-wind and superelevation conditions at high driving speed. The rolling, pitching, and yawing moment of the model bus were calculated with CFD numerical simulation, and the results were compared to the recovery angular moments of the model bus to evaluate the dynamic stability under given driving conditions. As the model vehicle moves on a straight level road, it is stable under any side-wind conditions. However, on a curved road under side-wind conditions, it could reach unstable conditions dynamically. There is a chance that the bus will turn over when it moves on a curved road with a radius of gyration less than 100 m under side-wind (15 m/s). However, there is a very small chance of breakaway from the lane under any driving conditions.

Road Test Scenario and Performance Assessments of Lane Keeping Assistance System for Passenger Vehicles (승용자동차 차로유지지원장치의 주행 성능 평가)

  • Woo, Hyungu;Yong, Boojoong;Kim, Kyungjin;Lim, Jaehwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.255-263
    • /
    • 2016
  • Lane Keeping Assistance System (LKAS) is a kind of Advanced Driver Assistance Systems (ADAS) which are developed to automate/ adapt/ enhance vehicle systems for safety and better driving. The main system function of LKAS is to support the driver in keeping the vehicle within the current lane. LKAS acquires information on the position of the vehicle within the lane and, when required, sends commands to actuators to influence the lateral movement of the vehicle. Recently, the vehicles equipped with LKAS are commercially available in a few vehicle-advanced countries and the installation of LKAS increases for safety enhancement. The test procedures for LKAS evaluations are being discussed and developed in the international committees such as ISO (the International Organization for Standardization) and UNECE (United Nations Economic Commission for Europe). In Korea, the evaluations of LKAS for vehicle safety are planned to be introduced in 2016 KNCAP (Korean New Car Assessment Program). Therefore, the test procedures of LKAS suitable for domestic road and traffic conditions, which accommodate international standards, should be developed. In this paper, some bullet points of the test procedures for LKAS are discussed and proposed by extensive researches of previous documents and reports, which are released in public in regard to lateral test procedures including LKAS and Lane Departure Warning System (LDWS). And then, to evaluate the validity of the proposed test procedures, a series of experiments were conducted using commercially available two vehicles equipped with LKAS. Later, it can be helpful to make a draft considering domestic traffic situations for test procedures of LKAS.

LDWS Performance Study Based on the Vehicle Type (차량종류에 따른 LDWS 성능에 관한 연구)

  • Park, Hwan-Seo;Lee, Hong-Guk;Chang, Kyung-Jin;Yoo, Song-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.39-45
    • /
    • 2012
  • More than 80 percent of traffic accidents related with lane departure believed to be the result of crossing the lane due to either negligence or drowsiness of the driver. Lane-departure related accident in the highway usually involve high fatality. Even though LDWS is believed to prevent accident 25% and reduce fatalities by 15% respectively, its effectiveness in performance is yet to be confirmed in many aspects. In this study, the vehicle lateral locations relative to warning zone envelop (earliest and latest warning zone) defined in ISO standard, ECE and NHTSA regulations are compared with respect to various factors including delays, vehicle speed and vehicle heading angle with respect to the lane. Since LDWS is designed to be activated at the speed over 60 km/h, vehicle speed range for the study is set to be from 60 to 100 km/h. The vehicle heading angle (yaw angle) is set to be up to 5 degree away from the lane (abrupt lane change) considering standard for lane change test using double lane-change test specification. The TLC is calculated using factors like vehicle speed, yaw angle and reaction time. In addition, the effect of vehicle type has been considered to assess LDWS safety.

Efficient Implementation of FMCW Radar Signal Processing Parts Using Low Cost DSP (저가형 DSP를 사용하는 FMCW 레이더 신호처리부의 효율적 구현 방안)

  • Oh, Woojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.707-714
    • /
    • 2016
  • Active driving safety systems for vehicle, such as the front collision avoidance, lane departure warning, and lane change assistance, have been popular to be adopted to the compact car. For improving performance and competitive cost, FMCW radar has been researched to adopt a phased array or a multi-beam antenna, and to integrate the front and the side radar. In this paper we propose several efficient methods to implement the signal processing module of FMCW radar system using low cost DSP. The pulse width modulation (PWM) based analog conversion, the approximation of time-eating functions, and the adoption of vector-based computation, etc, are proposed and implemented. The implemented signal processing board shows the real-time performance of 1.4ms pulse repetition interval (PRI) with 1024pt-FFT. In real road we verify the radar performance under real-time constraints of 10Hz update time.

Virtual Contamination Lane Image and Video Generation Method for the Performance Evaluation of the Lane Departure Warning System (차선 이탈 경고 시스템의 성능 검증을 위한 가상의 오염 차선 이미지 및 비디오 생성 방법)

  • Kwak, Jae-Ho;Kim, Whoi-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.627-634
    • /
    • 2016
  • In this paper, an augmented video generation method to evaluate the performance of lane departure warning system is proposed. In our system, the input is a video which have road scene with general clean lane, and the content of output video is the same but the lane is synthesized with contamination image. In order to synthesize the contamination lane image, two approaches were used. One is example-based image synthesis, and the other is background-based image synthesis. Example-based image synthesis is generated in the assumption of the situation that contamination is applied to the lane, and background-based image synthesis is for the situation that the lane is erased due to aging. In this paper, a new contamination pattern generation method using Gaussian function is also proposed in order to produce contamination with various shape and size. The contamination lane video can be generated by shifting synthesized image as lane movement amount obtained empirically. Our experiment showed that the similarity between the generated contamination lane image and real lane image is over 90 %. Futhermore, we can verify the reliability of the video generated from the proposed method through the analysis of the change of lane recognition rate. In other words, the recognition rate based on the video generated from the proposed method is very similar to that of the real contamination lane video.

A Lane-Departure Identification Based on Linear Regression and Symmetry of Lane-Related Parameters (차선관련 파라미터의 대칭성과 선형회귀에 기반한 차선이탈 인식)

  • Yi Un-Kun;Lee Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.435-444
    • /
    • 2005
  • This paper presents a lane-departure identification (LDI) algorithm for a traveling vehicle on a structured road. The algorithm makes up for the weak points of the former method based on EDF[1] by introducing a Lane Boundary Pixel Extractor (LBPE), the well known Hough transform, and liner regression. As a filter to extract pixels expected to be on lane boundaries, the LBPE plays an important role in enhancing the robustness of LDI. Utilizing the pixels from the LBPE the Hough transform provides the lane-related parameters composed of orientation and distance, which are used in the LDI. The proposed LDI is based on the fact the lane-related parameters of left and right lane boundaries are symmetrical as for as the optical axis of a camera mounted on a vehicle is coincident with the center of lane; as the axis deviates from the center of lane, the symmetrical property is correspondingly lessened. In addition, the LDI exploits a linear regression of the lane-related parameters of a series of successive images. It plays the key role of determining the trend of a vehicle's traveling direction and minimizing the noise effect. Except for the two lane-related parameters, the proposed algorithm does not use other information such as lane width, a curvature, time to lane crossing, and of feet between the center of a lane and the optical axis of a camera. The system performed successfully under various degrees of illumination and on various road types.

A Study on DGPS/GIS-based Vehicle Control for Safe Driving (안전주행을 위한 DGPS/GIS 기반의 차량제어 연구)

  • Lee, Kwanghee;Bak, Jeong-Hyeon;Lee, Chul-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.54-58
    • /
    • 2013
  • In recent days, vehicles have become equipped with electric systems that assist and help drivers driving safe by reducing possible accidents. LDWS(Lane Departure Warning System) and LKAS(Lane Keeping Assistant System) are involved in assist systems, especially for lateral motion of vehicles. Sudden and inattentive lateral motion of vehicles due to drivers' fatigue, illness, inattention, and drowsiness are major causes of accidents in highway. LDWS and LKAS provide drivers with warnings or assisting power to reduce any possibilities of accidents. In order to prevent or minimize the possibilities of accidents, lateral motion control of vehicles has been introduced in this research. DGPS/RTK(Differential Global Positioning System/Real Time Kinematics) and GIS(Geographic Information System) have been used to obtain the current position of vehicles and decide when activate controlling lateral motion of vehicles. The presented lateral motion control has been validated with actual vehicle tests.

Active Safety Features Evaluation with Korean Drivers (능동 안전장치의 한국 운전자 주행 평가)

  • Lee Hwa Soo;Cho Jae Ho;Yim Jong Hyun;Lee Hong Guk;Chang Kyung Jin;Yoo Song Min
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • A study assessing driver acceptance level for various active safety systems against Korean drivers has been conducted. A 2013 Cadillac ATS model vehicle was tested along southern outskirt of Seoul including local roadway and interurban highway. Active safety systems included were FCA(Forward Collision Alert), LDW(Lane Departure Warning), SBZA(Side Blind Zone Alert), FRPA(Front/Rear Park Assist), RCTA(Rear Cross Traffic Alert), ACC(Adaptive Cruise Control), and AEB(Autonomous Emergency Braking). Participants experienced the FRPA, RCTA and AEB features in a controlled parking lot with a dummy vehicle and traffic cones as target obstacles. Remaining features have been tested on the accumulated stretched of 106 km long urban and interurban roadway. Series of questionnaires corresponding to each active safety systems have been conducted. Tentative results revealed that RCTA and SBZA systems received favourable ratings compared to the other ones.

A Study on the Consumer Insights of Active Safety Features (능동안전장치의 소비자 인식 연구)

  • Sim, Jihwan;Lee, Hwasoo;Yim, Jonghyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.6-10
    • /
    • 2016
  • The objective of this paper is to understand value of active safety features on the customer perspective. In this study, 30 participants who don't have experience with active safety features were recruited and asked for preference, usefulness and consideration of each active safety feature after driving evaluation by them. Through this research, the preference of active safety features were analyzed and which of active safety features were the most useful and the most considered by customer when they purchase new vehicle. As a result, adaptive cruise control and side blind zone alert were the most strongly preferred and considered features by respondents and it means that respondents wanted comfort environment while driving and seemed to value features that compensated for limited visibility. On the other hand, active safety features that warned driver without control of the vehicle was deemed generally less desirable such as lane departure warning and forward collision alert. But autonomous emergency braking was higher than the other active safety features with only warning even if they did not have experience for it while this test. They thought it will be helpful in case of front-end collision situation even they just listened description before the test.