Journal of the Korean Institute of Intelligent Systems
/
v.22
no.2
/
pp.154-160
/
2012
Recently, development of technologies for autonomous vehicles has been actively carried out. This paper proposes a computer vision system to recognize lanes, crosswalks, and stop lines for autonomous vehicles. This vision system first recognizes lanes required for autonomous driving using the RANSAC algorithm and the Kalman filter, and changes the viewpoint from the perspective-angle view of the street to the top-view using the fact that the lanes are parallel. Then in the reconstructed top-view image this system recognizes a crosswalk based on its geometrical characteristics and searches for a stop line within a region of interest in front of the recognized crosswalk. Experimental results show excellent performance of the proposed vision system in recognizing lanes, crosswalks, and stop lines.
Park Jae-Hyeon;Lee Hack-Man;Cho Jae-Hyun;Cha Eui-Young
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.2
/
pp.406-412
/
2006
In this paper, we propose OHT(optimized nough Transform) algorithm for the lane extraction. Input image is changed into 256 gray revel image. Gray level image is separated into background region and road region by using limited horizontal projection value. In separated road area, we apply OHT algorithm. OHT algorithm is characterized as follows. First, the number of candidate pixels is reduced using the outline orientation of the lane. Second, each range of the left and right lane is defined by limited ${\theta}$ Experimental results show that the proposed method is better than Hough Transform.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.48
no.4
/
pp.86-97
/
2011
This paper presents a novel algorithm to detect more accurate road lane with image sensor-based color classification and directional edge clustering. With treatment of road region and lane as a recognizable color object, the classification of color cues is processed by an iterative optimization of statistical parameters to each color object. These clustered color objects are taken into considerations as initial kernel information for color object detection and recognition. In order to improve the limitation of object classification using the color cues, the directional edge cures within the estimated region of interest in the lane boundary (ROI-LB) are clustered and combined. The results of color classification and directional edge clustering are optimally integrated to obtain the best detection of road lane. The characteristic of the proposed system is to obtain robust result to all real road environments because of using non-parametric approach based only on information of color and edge clustering without a particular mathematical road and lane model. The experimental results to the various real road environments and imaging conditions are presented to evaluate the effectiveness of the proposed method.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.6
/
pp.786-792
/
2010
This paper presents a real-time lane detection method which can accurately find the lane-mark boundaries in complex road environment. Unlike many existing methods that pay much attention on the post-processing stage to fit lane-mark position among a great deal of outliers, the proposed method aims at removing those outliers as much as possible at feature extraction stage, so that the searching space at post-processing stage can be greatly reduced. To achieve this goal, a grid-based morphology operation is firstly used to generate the regions of interest (ROI) dynamically, in which a directional edge-linking algorithm with directional edge-gap closing is proposed to link edge-pixels into edge-links which lie in the valid directions, these directional edge-links are then grouped into pairs by checking the valid lane-mark width at certain height of the image. Finally, lane-mark colors are checked inside edge-link pairs in the YUV color space, and lane-mark types are estimated employing a Bayesian probability model. Experimental results show that the proposed method is effective in identifying lane-mark edges among heavy clutter edges in complex road environment, and the whole algorithm can achieve an accuracy rate around 92% at an average speed of 10ms/frame at the image size of $320{\times}240$.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.8
/
pp.355-360
/
2017
Recently, with the development of autonomous vehicle technology, the importance of precise road maps is increasing. A precise road map is a digital map with lane information, regulations, safety information, and various road facilities. Conventional precise road maps have been tested and developed based on the mobile mapping system (MMS). But they have not been activated due to high introduction costs. However, in the case of unmanned aerial vehicles (UAVs), the application field is continuously increasing. This study tries to extract information through classification of high-resolution UAV images for autonomous driving. Autonomous vehicle test roads were selected as study sites, and high-resolution orthoimages were produced using UAVs. In addition, the utilization of high-resolution orthoimages has been proposed by effectively extracting data for precise road map construction, such as road lines, guards, and machines through image classification. If additional experimentation and verification are performed, the field of UAV image use will be expanded, providing the data to automobile manufacturers and related public and private organizations, and venture companies will contribute to the development of domestic autonomous vehicle technology.
Kim, Kwang Soo;Lee, Ju Hyoung;Kim, Su Kwol;Bae, Myung Won;Lee, Deok Jin
Transactions of the Korean Society of Mechanical Engineers A
/
v.39
no.2
/
pp.235-240
/
2015
Active Safety system is requested on the market of the medium and heavy duty commercial vehicle over 4.5ton beside the market of passenger car with advancement of the digital equipment proportionally. Unlike the passenger car, the mounting position of camera in case of the medium and heavy duty commercial vehicle is relatively high, it is disadvantaged conditions for lane recognition in contradiction to passenger car. In this work, we show the method of lane recognition through the Sobel edge, based on the spatial domain processing, Hough transform and color conversion correction. Also we suggest the low error method of front vehicles recognition in order to reduce the detection error through Haar-like, Adaboost, SVM and Template matching, etc., which are the object recognition methods by frontal camera vision. It is verified that the reliability over 98% on lane recognition is obtained through the vehicle test.
For the realization of future intelligent transportation systems, fine-grained lane-by-lane traffic monitoring and control functionalities are among the most important technology barriers to overcome. To satisfy the accuracy requirement for traffic monitoring, a GNSS receiver network is designed. The designed receiver network consists of three different types of entities; reference server, broadcaster, and client. For deployment flexibility, all the entities utilize the international message standard RTCM SC-104 version 3.0. For fine-grained traffic monitoring, the client is designed to utilize position-domain carrier-smoothed-code filters to provide accurate vehicle coordinates in spite of frequent addages and outages of visible satellites. An experiment result is presented to evaluate the positioning accuracy of the proposed method.
Journal of Korea Spatial Information System Society
/
v.4
no.2
s.8
/
pp.55-64
/
2002
VEfficient generation of road data is one of the most important issues in GIS (Geographic Information System). In this paper, we propose a hybrid approach for automatic generation of road data by combining mobile mapping and image processing techniques. Mobile mapping systems have a form of vehicle equipped with CCD camera, GPS, and INS. They can calculate absolute position of objects that appear in acquired image by photogrammetry, but it is labor-intensive and time-consuming. Automatic road detection methods have been studied also by image processing technology. However, the methods are likely to fail because of obstacles and exceptive conditions in the real world. To overcome the problems, we suggest a hybrid method for automatic road generation, by exploiting both GPS/INS data acquired by mobile mapping system and image processing algorithms. We design an estimator to estimate 3-D coordinates of road line and corresponding location in an image. The estimation process reduces complicated image processing operations that find road line. The missing coordinates of road line due to failure of estimation are obtained by cubic spline interpolation. The interpolation is done piecewise, separated by rapid change such as road intersection. We present experimental results of the suggested estimation and interpolation methods with image sequences acquired by mobile mapping system, and show that the methods are effective in generation of road data.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.808-810
/
2005
분 논문에서는 워터마크가 삽입된 영상의 비가시성과 강인성을 보장하기 위하여 주파수 영역 기반인 FFT(Fast Fourier Transform)을 이용하였다. 그리고 영상에 삽입된 워터마크를 정확하게 추출하기 위하여 워터마크에 삽입하는 키 사이의 직교성을 유지할 수 있는 그람-슈미트 정규직교화를 이용하였다. 실험을 통해 살펴본 결과 영상의 특징에 관계없이 랜덤계열에 민감한 워터마크를 추출할 수 있는 정확성 및 신뢰성을 가짐을 알 수 있었다.
In this paper, we propose an algorithm for initializing a target vehicle detection, tracking the vehicle and estimating the distance from it on the stereo images acquired from a forward-looking stereo camera mounted on a road driving vehicle. The process of vehicle detection extracts road region using lane recognition and searches vehicle feature from road region. The distance of tracking vehicle is estimated by TSS correlogram matching from stereo Images. Through the simulation, this paper shows that the proposed method segments, matches and tracks vehicles robustly from image sequences obtained by moving stereo camera.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.