• Title/Summary/Keyword: 차선성능

Search Result 131, Processing Time 0.03 seconds

Optical Flow Based Vehicle Counting and Speed Estimation in CCTV Videos (Optical Flow 기반 CCTV 영상에서의 차량 통행량 및 통행 속도 추정에 관한 연구)

  • Kim, Jihae;Shin, Dokyung;Kim, Jaekyung;Kwon, Cheolhee;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.448-461
    • /
    • 2017
  • This paper proposes a vehicle counting and speed estimation method for traffic situation analysis in road CCTV videos. The proposed method removes a distortion in the images using Inverse perspective Mapping, and obtains specific region for vehicle counting and speed estimation using lane detection algorithm. Then, we can obtain vehicle counting and speed estimation results from using optical flow at specific region. The proposed method achieves stable accuracy of 88.94% from several CCTV images by regional groups and it totally applied at 106,993 frames, about 3 hours video.

Development of a model to predict Operating Speed (주행속도 예측을 위한 모형 개발 (2차로 지방부 도로 중심으로))

  • 이종필;김성호
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.131-139
    • /
    • 2002
  • This study introduces a developed artificial neural networks(ANN) model as a more efficient and reliable prediction model in operating speed Prediction with the 85th percentile horizontal curve of two-way rural highway in the aspect of evaluating highway design consistency. On the assumption that the speed is decided by highway geometry features, total 30 survey sites were selected. Data include currie radius, curve length, intersection angle, sight distance, lane width, and lane of those sites and were used as input layer data of the ANN. The optimized model structure was drawn by number of unit of hidden layer, learning coefficient, momentum coefficient, and change in learning frequency in multi-layer a ANN model. To verify learning Performance of ANN, 30 survey sites were selected while data in obtained from the 20 cites were used as learning data and those from the remaining 10 sites were used as predictive data. As a result of statistical verification, the model D of 4 types of ANN was evaluated as the most similar model to the actual operating speed value: R2 was 85% and %RMSE was 0.0204.

Semi-Active Control of a Suspension System with a MR Damper of a Large-sized Bus (MR 댐퍼를 이용한 대형 버스 현가장치의 반능동 제어)

  • Yoon, Ho-Sang;Moon, Il-Dong;Kim, Jae-Won;Oh, Chae-Youn;Lee, Hyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.683-690
    • /
    • 2012
  • In this work, the semi-active control of a large-sized bus suspension system with an MR damper was studied. An MR damper model that can aptly describe the hysteretic characteristics of an MR damper was adopted. Parameter values of the MR damper model were suitably modified by considering the maximum damping force of a passive damper used in the suspension system of a real large-sized bus. In addition, a fuzzy logic controller was developed for semi-active control of a suspension system with an MR damper. The vertical acceleration at the attachment point of the MR damper and the relative velocity between sprung and unsprung masses were used as input variables, while voltage was used as the output variable. Straight-ahead driving simulations were performed on a road with a random road profile and on a flat road with a bump. In straight-ahead driving simulations, the vertical acceleration and pitch angle were measured to compare the riding performance of a suspension system with a passive damper with that of a suspension with an MR damper. In addition, a single lane change simulation was performed. In the simulation, the lateral acceleration and roll angle were measured in order to compare the handling performance of a suspension system using a passive damper with that of a suspension system using an MR damper.

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.

Applied Method of Energy Harvesting for Multi-Relay Environment (다중 중계기 환경에 대한 에너지 하베스팅의 적용 방안)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.69-74
    • /
    • 2014
  • In this paper, an energy harvesting scheme is investigated in the multi-relay cooperation communication. Our proposal is to maximize the diversity gain and overcome the disadvantages of the limited power wireless devices. The best relay is selected based on the maximizing channel gains from source to relays so that the harvested energy at selected relay is best. If an internal power of the best relay is lower than a defined target power, the best relay will harvest the energy from the source, and the help of the source-destination link is changed to the second best relay. By this operation method, the diversity gain is maintained and the performance of the network is improved. Finally, performance of the proposed protocol is analyzed in terms of bit error rate, utilization efficiency, power collection efficiency.

Design and Implementation of ontology based context-awareness platform using driver intent information (운전자 의도정보를 이용한 온톨로지 기반 지능형자동차 상황인식 플랫폼 설계 및 구현)

  • Ko, Jae-Jin;Choi, Ki-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.14-21
    • /
    • 2014
  • In this paper, we devise a new ontology-based context-aware system to recognize the smart car information, in which driver's intent is utilized by information of car, driver, environment as well as driving state, driver state. So proposed system can handle dynamically risk changes by adding real-time situational awareness information. We utilize the camera image recognition technology for context-aware intelligent vehicle driving information, and implement information acquisition scheme OBD-II protocol to acquire vehicle's information. Experiments confirm that the proposed advanced driver safety assist system outperforms the conventional system, which only utilizes the information of vehicle, driver, and environmental information, to support the service of a high-speed driving, lane-departure service and emergency braking situation awareness.

Implementation of Integrated Controller of ACC/LKS based on OSEK OS (OSEK OS 기반 ACC/LKS 통합제어기 구현)

  • Choi, Dan-Bee;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • This paper implements an integrated vehicle chassis system of ACC(Adaptive Cruise Control) and LKS(Lane Keeping System) based on OSEK OS to vehicle operating system and analyzes its performance through experiments. In recent years active safety and advanced driver assistance system has discussed to improve safety of vehicle. Among the rest, We integrate ACC that controls longitudinal velocity of vehicle and LKS that assists a vehicle in maintaing its driving lane, then implement integrated control system in vehicle. Implemented control system uses OSEK/VDX proposed standard, which is aiming at reusability and safety of software for vehicle and removal hardware dependence of application software. Redesigned control system based on OSEK OS, which is supported by OSEK/VDX, can manage real-time task, process interrupt and manage shared resource. We show by results performed EILS(ECU-In-the-Loop Simulation) that OSEK OS-based integrated controller of ACC and LKS is equivalent conventional integrated controller of ACC and LKS.

User Scheduling Algorithm for Cell Capacity Maximization in Full Duplexing Wireless Cellular Networks (전이중 무선 셀룰라 네트워크에서 셀 용량 최대화를 위한 사용자 스케쥴링 방식)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2613-2620
    • /
    • 2014
  • In this paper, we consider a full duplexing (FD) wireless cellular network where a central base station (BS) works in the FD mode while the downlink (DL) and uplink (UL) users work in the time division duplexing (TDD) mode. Since this FD system induces the inter-user interference from UL user to DL user, the main challenge for maximizing the system performances is user scheduling that makes a pair of DL user and UL user to use the same radio resource simultaneously. We formulate an optimization problem for user pairing to maximize the cell capacity and propose a suboptimal user scheduling algorithm with low complexity. This scheduling algorithm is designed in a way where the DL user with a better signal quality has a higher priority to choose its UL user that causes less interference. Simulation results show that the FD system using the proposed user scheduling algorithm achieves the optimal performance and significantly outperforms the conventional TDD system in terms of the cell capacity.

Design of a GCS System Supporting Vision Control of Quadrotor Drones (쿼드로터드론의 영상기반 자율비행연구를 위한 지상제어시스템 설계)

  • Ahn, Heejune;Hoang, C. Anh;Do, T. Tuan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1247-1255
    • /
    • 2016
  • The safety and autonomous flight function of micro UAV or drones is crucial to its commercial application. The requirement of own building stable drones is still a non-trivial obstacle for researchers that want to focus on the intelligence function, such vision and navigation algorithm. The paper present a GCS using commercial drone and hardware platforms, and open source software. The system follows modular architecture and now composed of the communication, UI, image processing. Especially, lane-keeping algorithm. are designed and verified through testing at a sports stadium. The designed lane-keeping algorithm estimates drone position and heading in the lane using Hough transform for line detection, RANSAC-vanishing point algorithm for selecting the desired lines, and tracking algorithm for stability of lines. The flight of drone is controlled by 'forward', 'stop', 'clock-rotate', and 'counter-clock rotate' commands. The present implemented system can fly straight and mild curve lane at 2-3 m/s.

Optimum Design of Front Toe Angle Using Design of Experiment and Dynamic Simulation for Evaluation of Handling Performances (실험계획법을 이용한 전륜 토우각의 최적설계 및 조종 안정성능 평가 시뮬레이션)

  • 서권희;민한기;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.120-128
    • /
    • 2000
  • At the initial design stage of a new vehicle, the chassis layout has the most important influence on the overall vehicle performance. Most chassis designers have achieved the target performances by trial and error method as well as individual knowhow. Accordingly, a general procedure for determining the optimum location of suspension hard points with respect to the kinematic characteristics needs to be developed. In this paper, a method to optimize the toe angle in the double wishbone type front suspension of the four-wheel-drive vehicle is presented using the design of experiment, multibody dynamic simulation, and optimum design program. The handling performances of two full vehicle models having the initial and optimized toe angle are compared through the single lane change simulation. The sensitive design variables with respect to the kinematic characteristics are selected through the experimental design sensitivity analysis using the perturbation method. An object function is defined in terms of the toe angle among those kinematic characteristics. By the design of experiment and regression analysis, the regression model function of toe angle is obtained. The design variables which make the toe angle optimized ae extracted using the optimum design program DOT. The single lane change simulation and test of the full vehicle model are carried out to survey the handling performances of vehicle with toe angle optimized. The results of the single lane change simulation show that the optimized vehicle has the more improved understeer tendency than the initial vehicle.

  • PDF