• 제목/요약/키워드: 차분 프라이버시

검색결과 24건 처리시간 0.018초

차분 프라이버시를 적용한 연합학습 연구 (Research on Federated Learning with Differential Privacy)

  • 이주은;김영서;이수빈;배호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.749-752
    • /
    • 2024
  • 연합학습은 클라이언트가 중앙 서버에 원본 데이터를 주지 않고도 학습할 수 있도록 설계된 분산된 머신러닝 방법이다. 그러나 클라이언트와 중앙 서버 사이에 모델 업데이트 정보를 공유한다는 점에서 여전히 추론 공격(Inference Attack)과 오염 공격(Poisoning Attack)의 위험에 노출되어 있다. 이러한 공격을 방어하기 위해 연합학습에 차분프라이버시(Differential Privacy)를 적용하는 방안이 연구되고 있다. 차분 프라이버시는 데이터에 노이즈를 추가하여 민감한 정보를 보호하면서도 유의미한 통계적 정보 쿼리는 공유할 수 있도록 하는 기법으로, 노이즈를 추가하는 위치에 따라 전역적 차분프라이버시(Global Differential Privacy)와 국소적 차분 프라이버시(Local Differential Privacy)로 나뉜다. 이에 본 논문에서는 차분 프라이버시를 적용한 연합학습의 최신 연구 동향을 전역적 차분 프라이버시를 적용한 방향과 국소적 차분 프라이버시를 적용한 방향으로 나누어 검토한다. 또한 이를 세분화하여 차분 프라이버시를 발전시킨 방식인 적응형 차분 프라이버시(Adaptive Differential Privacy)와 개인화된 차분 프라이버시(Personalized Differential Privacy)를 응용하여 연합학습에 적용한 방식들에 대하여 특징과 장점 및 한계점을 분석하고 향후 연구방향을 제안한다.

차분 프라이버시 기반 비식별화 기술에 대한 연구

  • 정강수;박석
    • 정보보호학회지
    • /
    • 제28권2호
    • /
    • pp.61-77
    • /
    • 2018
  • 차분 프라이버시는 통계 데이터베이스 상에서 수행되는 질의 결과에 의한 개인정보 추론을 방지하기 위한 수학적 모델로써 2006년 Dwork에 의해 처음 소개된 이후로 통계 데이터에 대한 프라이버 보호의 표준으로 자리잡고 있다. 차분 프라이버시는 데이터의 삽입/삭제 또는 변형에 의한 질의 결과의 변화량을 일정 수준 이하로 유지함으로써 정보 노출을 제한하는 개념이다. 이를 구현하기 위해 메커니즘 상의 연구(라플라스 메커니즘, 익스퍼넨셜 메커니즘)와 다양한 데이터 분석 환경(히스토그램, 회귀 분석, 의사 결정 트리, 연관 관계 추론, 클러스터링, 딥러닝 등)에 차분 프라이버시를 적용하는 연구들이 수행되어 왔다. 본 논문에서는 처음 Dwork에 의해 제안되었을 때의 차분 프라이버시 개념에 대한 이해부터 오늘날 애플 및 구글에서 차분 프라이버시가 적용되고 있는 수준에 대한 연구들의 진행 상황과 앞으로의 연구 주제에 대해 소개한다.

로컬 차분 프라이버시 실제 적용 사례연구 : 프라이버시 보존형 설문조사 (Case Study on Local Differential Privacy in Practice : Privacy Preserving Survey)

  • 정수용;홍도원;서창호
    • 정보보호학회논문지
    • /
    • 제30권1호
    • /
    • pp.141-156
    • /
    • 2020
  • 차분 프라이버시는 데이터 프라이버시를 보존함과 동시에 데이터를 수집 및 분석할 수 있는 기법으로써 프라이버시 보존형 데이터 활용 분야에서 널리 적용되고 있다. 이러한 차분 프라이버시의 지역적 모델인 로컬 차분 프라이버시 알고리즘은 무작위 응답을 기반으로 데이터 소유자가 직접 데이터를 가공 처리하여 공개한다. 따라서 개인은 데이터 프라이버시를 보장받을 수 있으며, 데이터 분석가는 수집된 다수의 데이터를 통해 유용한 통계적 결과값을 도출할 수 있다. 이러한 로컬 차분 프라이버시 기법은 세계적 기업인 Google, Apple, Microsoft에서 실질적으로 사용자의 데이터를 수집 및 분석할 때 활용되고 있다. 본 논문에서는 현실에 실질적으로 활용되고 있는 로컬 차분 프라이버시 기법에 대해 비교분석한다. 또한, 실제 적용 사례 연구로써 개인의 프라이버시가 결과의 신뢰성에 큰 영향을 미치는 설문 및 여론조사 시나리오를 기반으로 로컬 차분 프라이버시 기법을 적용하여 현실에서의 활용 가능성에 대해 연구한다.

쿼드트리와 균등 샘플링를 이용한 효과적 차분 프라이버시 K-평균 클러스터링 알고리즘 (A Differentially Private K-Means Clustering using Quadtree and Uniform Sampling)

  • 홍대영;구한준;심규석
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.25-26
    • /
    • 2018
  • 최근 데이터를 공개할 때 프라이버시를 보호하기 위한 방법들이 연구되고 있다. 그 중 차분 프라이버시(differential privacy)는 최소성 공격 등에 대해서도 안전함이 증명된 익명화 기법이다. 본 논문에서는 기존 차분 프라이버시 -평균 클러스터링 알고리즘의 성능을 개선하고 실생활 데이터를 이용한 실험을 통해 이를 검증한다.

  • PDF

차분 프라이버시 히스토그램 공개 알고리즘의 개선 (An Improved Differentially Private Histogram Publication Algorithm)

  • 구한준;정우환;심규석
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.23-24
    • /
    • 2018
  • 최근 공격자의 사전 지식에 상관없이 개인 정보를 보호할 수 있는 차분 프라이버시 보호 기법에 대한 연구들이 진행되고 있다. 본 논문에서는 차분 프라이버시를 만족시키는 적은 수의 버킷을 가지는 히스토그램 공개 알고리즘을 소개하고 기존 알고리즘이 사용한 휴리스틱 방법의 문제와 개선 방법을 소개한다. 또한, 실험을 통해 개선한 방법이 기존의 알고리즘에 비하여 더 좋은 영역 합 질의 성능을 가지는 것을 보인다.

  • PDF

차분 프라이버시를 만족하는 안전한 GAN 기반 재현 데이터 생성 기술 연구 (A Study on Synthetic Data Generation Based Safe Differentially Private GAN)

  • 강준영;정수용;홍도원;서창호
    • 정보보호학회논문지
    • /
    • 제30권5호
    • /
    • pp.945-956
    • /
    • 2020
  • 많은 응용프로그램들로부터 양질의 서비스를 제공받기 위해서 데이터 공개는 필수적이다. 하지만 원본 데이터를 그대로 공개할 경우 개인의 민감한 정보(정치적 성향, 질병 등)가 드러날 위험이 있기 때문에 원본 데이터가 아닌 재현 데이터를 생성하여 공개함으로써 프라이버시를 보존하는 많은 연구들이 제안되어왔다. 그러나 단순히 재현 데이터를 생성하여 공개하는 것은 여러 공격들(연결공격, 추론공격 등)에 의해 여전히 프라이버시 유출 위험이 존재한다. 본 논문에서는 이러한 민감한 정보의 유출을 방지하기 위해, 재현 데이터 생성 모델로 주목받고 있는 GAN에 최신 프라이버시 보호 기술인 차분 프라이버시를 적용하여 프라이버시가 보존되는 재현 데이터 생성 알고리즘을 제안한다. 생성 모델은 레이블이 있는 데이터의 효율적인 학습을 위해 CGAN을 사용하였고, 데이터의 유용성 측면을 고려하여 기존 차분 프라이버시보다 프라이버시가 완화된 Rényi 차분 프라이버시를 적용하였다. 그리고 생성된 데이터의 유용성에 대한 검증을 다양한 분류기를 통해 실시하고 비교분석하였다.

쿼드 트리를 이용한 동적 공간 분할 기반 차분 프라이버시 k-평균 클러스터링 알고리즘 (Differentially Private k-Means Clustering based on Dynamic Space Partitioning using a Quad-Tree)

  • 구한준;정우환;오성웅;권수용;심규석
    • 정보과학회 논문지
    • /
    • 제45권3호
    • /
    • pp.288-293
    • /
    • 2018
  • 최근 공개되는 데이터에 적용하는 다양한 프라이버시 보호 기법들이 연구가 되어왔다. 그 중 차분 프라이버시는 본래의 데이터에 확률적인 노이즈를 더하여 공격자의 사전 지식에 상관없이 개인 정보를 보호한다. 기존 차분 프라이버시를 만족하는 k-평균 클러스터링은 데이터로부터 차분 프라이버시를 만족하는 히스토그램 형태로 바꾼 뒤. k-평균 클러스터링 알고리즘을 수행한다. 하지만 이는 데이터의 분포와 상관없이 등간격으로 히스토그램을 만들기 때문에 노이즈가 삽입되는 버킷이 많아지는 단점이 있다. 이를 해결하기 위해 본 논문에서는 데이터의 분포를 더 적은 버킷으로 나타낼 수 있는 쿼드 트리를 이용하여 히스토그램을 만든 뒤 k-평균을 찾는 알고리즘을 제안한다. 또한, 실험을 통해 기존의 알고리즘보다 더 좋은 성능을 가지는 것을 보인다.

AI 환경에서 모델 전도 공격에 안전한 차분 프라이버시 기술 (Differential Privacy Technology Resistant to the Model Inversion Attack in AI Environments)

  • 박철희;홍도원
    • 정보보호학회논문지
    • /
    • 제29권3호
    • /
    • pp.589-598
    • /
    • 2019
  • 온라인상에 축적되는 디지털 데이터의 양은 폭발적으로 증가하고 있으며 이러한 데이터들은 매우 큰 잠재적 가치를 갖고 있다. 국가 및 기업들은 방대한 양의 데이터로부터 다양한 부가가치를 창출하고 있으며 데이터 분석 기술에 많은 투자를 하고 있다. 그러나 데이터 분석에서 발생하는 프라이버시 문제는 데이터의 활용을 저해하는 큰 요인으로 작용하고 있다. 최근 신경망 모델 기반의 분석 기술에 대한 프라이버시 침해 공격들이 제안됨에 따라 프라이버시를 보존하는 인공 신경망 기술에 대한 연구가 요구되고 있다. 이에 따라 엄격한 프라이버시를 보장하는 차분 프라이버시 분야에서 다양한 프라이버시 보존형 인공 신경망 기술에 대한 연구가 수행되고 있지만, 신경망 모델의 정확도와 프라이버시 보존 강도 사이의 균형이 적절하지 않은 문제점이 있다. 본 논문에서는 프라이버시와 모델의 성능을 모두 보존하고 모델 전도 공격에 저항성을 갖는 차분 프라이버시 기술을 제안한다. 또한, 프라이버시 보존 강도에 따른 모델전도 공격의 저항성을 분석한다.

프라이버시 침해에 대응하는 분할 학습 모델 연구 (A Study of Split Learning Model to Protect Privacy)

  • 유지현;원동호;이영숙
    • 융합보안논문지
    • /
    • 제21권3호
    • /
    • pp.49-56
    • /
    • 2021
  • 현대의 인공지능은 사회를 구성하는 필수적인 기술로 여겨지고 있다. 특히, 인공지능에서 프라이버시 침해 문제는 현대 사회에서 심각한 문제로 자리 잡고 있다. 개인정보보호를 위해 2019년 MIT에서 제안된 분할 학습은 연합 학습의 기술 중 하나로 개인정보보호 효과를 지닌다. 본 연구에서는 데이터를 안전하게 관리하기 위해 알려진 차분 프라이버시를 이용하여 안전하고 정확한 분할 학습 모델을 연구한다. 또한, SVHN과 GTSRB 데이터 세트를 15가지의 차등적인 차분 프라이버시를 적용한 분할 학습 모델에 학습시키고 학습이 안정적으로 되는지를 확인한다. 최종적으로, 학습 데이터 추출 공격을 진행하여, 공격을 예방하는 차분 프라이버시 예산을 MSE를 통해 정량적으로 도출한다.

프라이버시 보존 데이터 수집을 지원하기 위한 시뮬레이션 툴 개발 (Development of Simulation Tool to Support Privacy-Preserving Data Collection)

  • 김대호;김종욱
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1671-1676
    • /
    • 2017
  • 빅데이터 시대의 도래로 다양한 데이터들이 발생되고 있다. 많은 산업 부분에서는 이러한 데이터들을 수집하여 분석하고자 한다. 하지만 사용자 정보 수집은 직접적인 개인정보 유출을 초래할 수 있다. 구글(Google) 사에서 제안한 지역 차분 프라이버시 기법은 데이터 변조를 통해 사용자 정보 수집에 있어 발생할 수 있는 개인정보 유출을 방지한다. 이러한 데이터 변조를 통한 개인정보 유출 방지는 그 변조되는 정도가 높을수록 개인정보를 강력히 보장하지만 이와 반대로 데이터의 활용도는 현저히 떨어진다. 그래서 데이터 변조의 정도를 데이터 수집목적에 적합하게 설정해야한다. 본 논문에서 제시하는 시뮬레이션 도구는 지역 차분 프라이버시를 만족하는 사용자 정보 수집에 있어 설정해야하는 다양한 변수값을 데이터 수집환경에 맞게 적용함으로써 데이터 수집가가 자신의 환경에 맞는 데이터 수집을 할 수 있도록 지원한다.