• Title/Summary/Keyword: 차륜구동형 로봇

Search Result 8, Processing Time 0.02 seconds

Design of the Patrol Robot with Variable Weels (가변구동 정찰로봇 시스템 설계)

  • Hwang, Sun-Myung;Jo, Ja-Yun
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.697-709
    • /
    • 2010
  • The patrol robot is a typical extreme robot for the military use. It helps soldiers by detecting and informing a potential risk instead, and warning earlier. Also, these kinds of extreme robots need good ability to conquest rough road. In this paper, we studied new mechanism through which we can get high speed on the flat road with round shape wheels, and simultaneously can get good ability to overcome rough road with blade-shape wheels. The shape of the wheels is being self-adaptively changed automatically according to the condition of the road without using additional actuator.

A Wheeled Inverted Pendulum System with an Automatic Standing Arm (자동기립이 가능한 차륜형 역진자 시스템 개발)

  • Lee, Se-Han
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.578-584
    • /
    • 2015
  • In this study a moving platform for a mobile robot that can be traveling with a full automatic standing arm was developed. Conventional mobile robots generally may equip 4 wheels or 3 wheels with a caster wheel or independent driven wheels and have good statistic stability. When a mobile robot travels on a sharply perpendicular and narrow crossroad, it may need a special steering scheme such as going forward and backward repeatedly or it is sometimes physically impossible for the robot to go through the crossroad because of the size limit. The upright running mobile robot changes its posture to the upright posture which has a small planar area and is able to go through the crossroad. The upright control which was manually performed step by step before such as sequences of uprighting (returning), checking, and balancing, is now automated.

Moving Object Following Control for Differential Drive Robot Based on Two Distance Sensors (두 개의 거리 센서를 이용한 차륜형 로봇의 이동물체 추종제어)

  • Seo, Dong-Jin;Noh, Sung-Woo;Ko, Nak-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.765-773
    • /
    • 2011
  • This paper proposes a control method for a differential robot to track and follow a moving object based on ultrasonic sensor. To track a target object, the method uses a transmitter and two receivers to get distances from the object. The method derives translational and rotational error by the distances and then it uses the errors to calculate control values based on PID control method. The control values are used to control the robot to follow moving object. The authors do some experimentations to analyze some characteristics such as influence of PID gain, influence of translational and rotational gain. This method not only can be applied for following moving object problem but also can be done group unit control problems.

Development of a Moving Platform for a Upright Running Mobile Robot Based on an Inverted Pendulum Mechanism (역진자 기구에 기반한 직립주행 가능 이동로봇용 구동 플랫폼 개발)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.570-576
    • /
    • 2012
  • In this research a moving platform for a mobile robot which can run with upright posture is proposed. It is able to stand with standing arms and run uprightly based on an inverted pendulum mechanism. Conventional mobile robots generally may equip 4 wheels or 3 wheels including a caster and have good statistic stability. They need a steering mechanism to choose which way to go since they have a square or rectangular configuration with multiple wheels. When a mobile robot meets a sharply perpendicular and narrow crossroad, it may need a special steering scheme such as going forward and backward repeatedly or it sometimes cannot even pass through the crossroad because of its size. The proposed moving platform for a mobile robot changes to a upright posture which has a small planar area and is able to pass through the crossroad. We propose a moving platform for a mobile robot with a inverted pendulum mechanism and standing arms which can make the mobile robot upright.

Path Tracking Control for a Wheeled Mobile Robot using Fuzzy Algorithm (퍼지 알고리즘을 이용한 차륜형 이동로봇의 경로추종제어)

  • 하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.731-737
    • /
    • 1999
  • This paper describes the path tracking control for a mobile robot which has two casters at the front and rear to keep balance and two driving wheels on the left and right sides of its body. Power wheeled steering method is adapted to control heading of the robot. It is very difficult to find appropriate feedback gains when linear regulator control scheme is adapted to path tracking con-trol of this type of robot. Therefore in this paper we propose the path tracking control algorithm using the fuzzy logic control scheme for this type of root. Simulation to prove the validity of the proposed two algorithms is performed. The results are reported as last part in this paper.

  • PDF

A Research on Ball-Balancing Robot (볼 벨런싱 로봇에 관한 연구)

  • Kim, Ji-Tae;Kim, Dae-young;Lee, Won-Joon;Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.463-466
    • /
    • 2017
  • The purpose of this paper is to develop a module capable of all-directional driving different from conventional wheeled robots, and to solve the problems of the conventional mobile robot with side driving performance degradation, It is possible to overcome the disadvantages such as an increase in the time required for the unnecessary driving. The all - direction spherical wheel drive module for driving a ball - balancing robot is required to develop a power transfer mechanism and a driving algorithm for driving the robot in all directions using three rotor casters. 3DoF (Axis) A driver with built-in forward motion algorithm is embedded in the module and a driving motor module with 3DoF (axis) for driving direction and speed is installed. The movement mechanism depends on the sum of the rotation vectors of the respective driving wheels. It is possible to create various movement directions depending on the rotation and the vector sum of two or three drive wheels. It is possible to move in different directions according to the rotation vector field of each driving wheel. When a more innovative all-round spherical wheel drive module for forward movement is developed, it can be used in the driving part of the mobile robot to improve the performance of the robot more technically, and through the forward-direction robot platform with the drive module Conventional wheeled robots can overcome the disadvantage that the continuous straightening performance is lowered due to resistance to various environments. Therefore, it is necessary to use a full-direction driving function as well as a cleaning robot and a mobile robot applicable in the Americas and Europe It will be an essential technology for guide robots, boarding robots, mobile means, etc., and will contribute to the expansion of the intelligent service robot market and future automobile market.

  • PDF

Experimental Studies of Controller Design for a Car-like Balancing Robot with a Variable Mass (무게 변화에 따른 차륜형 밸런싱 로봇의 제어기 설계 및 실험연구)

  • Kim, Hyun-Wook;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.469-475
    • /
    • 2010
  • This paper presents controller design of a two wheeled mobile inverted pendulum robot for one man transportation vehicle. Since the overall mass is varying with different drivers, suitable controller gains are obtained through experimental studies. Variation of the center of gravity due to different masses also affects stable balancing control. Thus, the desired balancing angle si required to be modified with respect to different masses. To measure masses for different drivers, a weight scale is used and those data are used for balancing control through communication. The gain scheduling method of using data obtained from experimental studies allows the robot to have stable balancing performances.

The Wheeled Inverted Pendulum Mobile Robot Control Using Gyroscope and Accelerometer Sensor (자이로와 가속도 센서를 이용한 차륜형 도립진자 이동로봇 제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.703-708
    • /
    • 2012
  • This paper proposes the improvement of control performance in the wheeled inverted mobile robot system. and describes the modeling of a wheeled inverted pendulum type mobile robot driven by two different wheels for the position and velocity control. The system is sensitive on the parameter variation, therefore control signal should change to maintain desired state of the system in every instant. we designed proportional-plus-integral controller for our system, After linearization, the system was still unstable, throughout stability analysis of the system, we designed the values of the gains of a proportional-plus-integral controller. From the experimental results, we can find that the performance of the proposed method is better than of the manual tuning method.