한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
/
pp.457-462
/
2000
교통 법규 위반 단속이나 주차 관리를 위한 차량 번호판 인식 시스템을 구현하기 위해서는 크게 차량 번호판 추출, 문자 분할, 문자 인식의 세부분으로 이루어진다. 본 논문에서는 차량 번호판 인식 시스템의 구현을 위해 번호판 영역의 색상정보를 이용하여 차량 번호판을 추출하는 방법을 제안하고, 번호판 영역 문자들의 사전 정보와 색상성분을 사용하여 정확하게 번호판 문자 분할을 하는 방법을 제안한다. 자가용과 영업용 차량 영상을 주간/dirks 및 정면/후면으로 나누어 다양하게 취득하여 실험한 결과, 94.6%의 번호판 추출률과 86.8%의 문자분할률을 얻었다.
본 논문에서는 차량 영역 정보를 이용한 교통 혼잡도 측정 시스템을 설계하고 구현한다. 제시한 교통 혼잡도 측정 시스템은 첫째 영역 분할, 둘째 작은 영역의 직사각형화, 셋째 영역의 병합 및 삭제의 세 단계로 나눌 수 있다. 영역 분할 단계에서 획득한 도로 영상을 주어진 임계치에 의해 영역으로 분할한다. 영역 분할후의 영역 정보 중 차량 영역을 추출하는데 영향을 미치지 않는 작은 영역들을 제거하고 영역을 직사각형화하는 단계를 거친다. 이 단계에서 필요없는 많은 작은 영역 정보들을 제거한다. 마지막으로 차선 별로 영역을 병합, 삭제함으로써 각 차선마다 차량 영역 정보를 추출할 수 있다. 본 논문에서는 이러한 차량 영역 정보를 추출하는 방법을 제시하며, 또한 이를 이용한 효과적인 교통 혼잡도 측정 시스템을 소개하고 평가한다.
본 논문에서는 교통 모니터링 시스템에 사용할 수 있는 국부 영역에서 차량 검지와 추적을 수행하는 새로운 기법을 제안하다. 차량 검지와 추적은 각 차선에 미리 설정된 영역에서만 이루어진다. 각 차선에 설정된 국부 영역을 에지 특성과 프레임 차이를 이용하여 여러 개의 분할 영역으로 나누고 분할영역의 통계적 특성과 기하학적 특성에 의해 차량, 도로, 그림자와 전조등 영역으로 분류하여 차량을 검출한다. 검출된 차량은 에지 영상의 정합에 의해 국부 영역내에서 추적하여 차량 속도, 길이, 차간 거리와 도로 점유율과 같은 교통 정보를 산출할 수 있다. 배경 영상을 사용하지 않으므로 다양한 조건에서 사용이 가능하고 다양한 기상, 시간대와 장소에서 90.16%의 높은 차량 검출의 정확도를 나타냈다. 동작 환경에서 카메라의 각도, 방향과 조리개 설정이 조정되면 아주 높은 정확도의 교통 모니터링 시스템의 핵심기술로 사용될 수 있을 것으로 기대된다.
본 논문에서는 차량 영역의 추출을 이용한 효율적인 교통 혼잡도 측정 시스템을 설계하고 구현한다. 차량 영역 정보의 추출은 첫째 영역 분할, 둘째 작은 영역의 제거와 영역의 직사각형화, 셋째 영역의 병합 및 삭제의 단계로 나눌 수 있다. 영역 분할 단계에서는 획득한 도로 영상을 영역 기반 영역 분할에 의해 영역으로 분할한다. 그 다음 영역 분할 후의 영역 정보 중 차량 영역을 추출하는데 영향을 미치지 않는 작은 영역들을 제거하고, 남은 영역들을 직사각형화한다. 마지막으로 차선 별로 남은 영역들을 병합, 삭제함으로써 각 차선마다 차량 영역 정보를 추출할 수 있다. 이러한 방법은 배경 영상과 같은 부가적인 정보를 사용하지 않고 도로 자체 영상만으로 교통 혼잡도를 측정할 수 있으며, 그림자의 영향이 없을 경우 적용할 수 있는 기법이다.Abstract In this paper, we designed and implemented an efficient road congestion analysis system using regional information. To extract vehicle regions from a road image, the system process the image in five steps: segmentation, small region elimination, region rectangularization, region merging and region deletion. First, we segment road image by a threshold value. Then, we eliminate useless small regions to extract vehicle region, and perform region rectangularization. Finally, we extract vehicle region of each lane of the road by region merging and deletion. This method has the advantage of measuring road congestion without additional information such as background images. But this method must be applied to road images without shadow.
본 논문에서는 교통 영상에서 실시간으로 차량을 검출하는 새로운 기법을 소개한다. 차량의 검출을 위하여 구배도의 방향 정보를 사용하며 차량 영역의 정확한 분할을 위하여 은닉 마르코프 모델을 사용한다. 구배도 방향정보를 이용하므로 그림자 영역의 영향을 줄일 수 있으며 은닉 마르코프 모델을 이용하므로 배경과 비슷한 차량과 근접한 차량의 분리가 가능하다. 따라서 저해상도의 교 통 영상에서 다양한 기상 조건, 그림자의 존재와 교통 상황에 강건한 검출 결과를 나타낸다.
도로 영상에서 차량 영역을 분할하는 차량 영역 분할(vehicle segmentation) 문제는 지능형 교통 시스템을 비롯한 다양한 응용 분야들에서 중요하게 사용되는 기본 연산(fundamental operation)이다. 본 연구에서는 야외의 도로 상에 설치된 CCD카메라에서 촬영된 정지 영상으로부터 차량 영역을 찾아내는 효율적인 방법을 제안한다 제안하는 방법은 입력되는 영상들을 격자 단위로 분할하여 각 격자에서의 에지 검출 결과를 대표하는 특징값(feature value)들을 통계적으로 분석한 후, 이를 바탕으로 최적해를 구한다. 전처리 과정에서는 다양한 외부 환경에서 촬영한 배경 영상들에 대해서 각 격자에서의 특징값들을 통계 처리한다. 입력된 차량 영상에서는 각 격자의 특징값이 배경 영상의 대응되는 격자에서의 특징값과 통계적으로 얼마나 오차를 보이냐에 따라, 배경 영역인지 차량 영역인지를 판단한다. 격자 별로 차량 영역에 해당하는 지를 판정한 뒤, 이 결과에 동적 프로그래밍(dynamic Programming) 기법을 이용하여 차량을 포함하는 최적의 직사각형 영역을 찾아낸다. 본 논문에서 제안하는 방법은 통계 처리와 전역 탐색 기법을 사용하므로 휴리스틱에 주로 의존하는 기존 연구들에 비해 좀더 체계적이다. 또한, 배경 영상에 대한 통계 처리는 흐리거나 맑은 등의 날씨 변화 및 바람이나 진동에 의한 카메라의 흔들림과 같은 다양한 외부 요인들이 가져올 수 있는 노이즈나 오차에 대해서도 높은 신뢰성을 보여준다. 제안하는 방법을 구현한 프로토타입 시스템은 $1280\times960$ 크기의 차량 영상들을 장당 평균 0.150초의 수행 시간에 처리하였으며, 총 270장의 다양한 노이즈를 가지는 차량 영상들에 대해 $97.03\%$의 성공률을 보였다.
요즘 자동차 제작비용 중 차량용 전자장치에 사용되는 비용이 30% 이상을 차지하고 있다. 따라서 차량용 전자장치에 사용되는 비용 절약의 필요성이 증가하고 있다. 그런데, 완성차 업체들은 차량용 전장부품을 제작하는 일을 대부분 외주 업체에 맡기기 때문에 전장부품의 테스트 및 디버깅의 복잡도가 증가하고 있다. 이로 인해, 차량용 전장부품의 테스트 시에 발생하는 결함의 위치를 찾아내는데 많은 비용과 시간을 소비하고 있다. 이러한 문제를 해결하기 위해, 본 논문에서는 차량용 전장부품을 대상으로 통합 테스팅을 수행하는 검사자가 메모리상의 결함후보를 축소할 수 있는 기법을 제안한다. 본 기법에서는 메모리 맵을 이용하여 메모리를 분할하고, 분할된 메모리 영역에 메모리 갱신 정보를 적용해 각 분할 영역의 결함 의심도를 계산한다. 이렇게 계산된 결함 의심도를 기준으로 분할 영역들의 결함 의심순위를 결정할 수 있다. 제안하는 기법을 이용해 결함 후보 영역을 전체 메모리 크기의 1/6 정도로 축소했다.
본 논문은 논리 연산을 이용한 실시간 주행 차량 분할 및 추적에 관한 알고리즘을 제안하였다. 연속된 프레임 간에 논리연산을 이용하여 영상을 분할하고, 배경과 잡음을 제거하였으며 영상에서 주행차량의 이동 영역을 추출하였다. 주행차량들을 논리 연산을 이용하여 영상분할 함으로써 기존 방법에 비해 평활화 및 에지추출 단계에서 나타날 수 있는 문제점들을 제거하였고, 전처리 단계를 줄였으며, 알고리즘을 단순화 하였다. 또한 추적되는 영상으로부터 위치와 컬러등의 주행 차량의 특징을 직접 추출 가능하도륵 하였다.
본 논문은 watershed를 이용한 차도 분할 알고리즘을 제안하고 있다. 제안된 알고리즘은 차량과 차선 정보를 이용해 차도 마커와 배경 마커를 자동 생성하는 automatic marked watershed를 이용한 영역 분할 알고리즘이고 이는 지나치게 많은 영역이나 마커를 위한 수작업 같은 watershed 기반 영역 분할의 문제점들을 해결할 수 있다. 차도 마커는 차선은 포함되나 차량은 배제되는 순수한 차도 영역을 위한 속성을 포함하고 배경 마커는 차량과 배경을 포함하는 나머지 영역을 위한 속성을 포함하고 있다. 실제 도로 영상에 적용된 영역 분할 결과들은 제안된 알고리즘은 다양한 환경에서 적절한 마커들을 생성할 수 있고, 주행 차로와 양옆 차로를 포함한 필수 차도 영역을 적절하게 분할할 수 있는 것을 보여주고, 성능 면에 있어서는 제안된 알고리즘은 수작업으로 생성된 마커를 사용한 기존 알고리즘과 대등함을 보여준다.
본 논문에서는 도로에서 주행 중인 차량검출 알고리즘에 대하여 연구한다. 카메라에서 입력된 영상으로부터 차량을 검출하기위해 먼저 분할 및 합병(split & merge)방법을 적용하여 영상을 분할하고 그 다음 분할된 영역을 해석하여 차량이 위치할 가능성이 높은 영역을 집중적으로 탐색하여 차량을 실시간으로 검출하는 알고리즘을 연구한다. 전방차량의 후면을 검출하기 위하여 수직/수평 성분을 특정으로 하였으며 적분영상을 이용하여 계산시간을 줄일 수 있는 Haar-like방법을 적용하였으며 분류기로는 SVM을 사용하였다. 제안된 방법의 성능을 평가하기 위해 350개의 영상을 사용하여 분류기를 학습하였으며 또한 학습에 사용하지 않은 비학습영상 150개를 사용하여 인식률을 구하였다. 실험결과 비학습영상에 대해 95.00%의 인식률을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.