• 제목/요약/키워드: 차량 영역 분할

검색결과 60건 처리시간 0.038초

차량 번호판의 영역 추출 및 문자 분할에 관한 연구 (The Extraction of Car License Plates and the Separation of Characters)

  • 권숙연;이화진;전병환
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
    • /
    • pp.457-462
    • /
    • 2000
  • 교통 법규 위반 단속이나 주차 관리를 위한 차량 번호판 인식 시스템을 구현하기 위해서는 크게 차량 번호판 추출, 문자 분할, 문자 인식의 세부분으로 이루어진다. 본 논문에서는 차량 번호판 인식 시스템의 구현을 위해 번호판 영역의 색상정보를 이용하여 차량 번호판을 추출하는 방법을 제안하고, 번호판 영역 문자들의 사전 정보와 색상성분을 사용하여 정확하게 번호판 문자 분할을 하는 방법을 제안한다. 자가용과 영업용 차량 영상을 주간/dirks 및 정면/후면으로 나누어 다양하게 취득하여 실험한 결과, 94.6%의 번호판 추출률과 86.8%의 문자분할률을 얻었다.

  • PDF

영역 정보를 이용한 교통 혼잡도 측정 시스템의 설계 및 구현 (Design and Implementation of the system for Measuring Congestion of Road using Region Information)

  • 최병걸;안철웅;김승호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.488-490
    • /
    • 1998
  • 본 논문에서는 차량 영역 정보를 이용한 교통 혼잡도 측정 시스템을 설계하고 구현한다. 제시한 교통 혼잡도 측정 시스템은 첫째 영역 분할, 둘째 작은 영역의 직사각형화, 셋째 영역의 병합 및 삭제의 세 단계로 나눌 수 있다. 영역 분할 단계에서 획득한 도로 영상을 주어진 임계치에 의해 영역으로 분할한다. 영역 분할후의 영역 정보 중 차량 영역을 추출하는데 영향을 미치지 않는 작은 영역들을 제거하고 영역을 직사각형화하는 단계를 거친다. 이 단계에서 필요없는 많은 작은 영역 정보들을 제거한다. 마지막으로 차선 별로 영역을 병합, 삭제함으로써 각 차선마다 차량 영역 정보를 추출할 수 있다. 본 논문에서는 이러한 차량 영역 정보를 추출하는 방법을 제시하며, 또한 이를 이용한 효과적인 교통 혼잡도 측정 시스템을 소개하고 평가한다.

  • PDF

분할 영역 정보를 이용한 국부 영역에서 차량 검지 및 추적 (Detecting and Tracking Vehicles at Local Region by using Segmented Regions Information)

  • 이대호;박영태
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권10호
    • /
    • pp.929-936
    • /
    • 2007
  • 본 논문에서는 교통 모니터링 시스템에 사용할 수 있는 국부 영역에서 차량 검지와 추적을 수행하는 새로운 기법을 제안하다. 차량 검지와 추적은 각 차선에 미리 설정된 영역에서만 이루어진다. 각 차선에 설정된 국부 영역을 에지 특성과 프레임 차이를 이용하여 여러 개의 분할 영역으로 나누고 분할영역의 통계적 특성과 기하학적 특성에 의해 차량, 도로, 그림자와 전조등 영역으로 분류하여 차량을 검출한다. 검출된 차량은 에지 영상의 정합에 의해 국부 영역내에서 추적하여 차량 속도, 길이, 차간 거리와 도로 점유율과 같은 교통 정보를 산출할 수 있다. 배경 영상을 사용하지 않으므로 다양한 조건에서 사용이 가능하고 다양한 기상, 시간대와 장소에서 90.16%의 높은 차량 검출의 정확도를 나타냈다. 동작 환경에서 카메라의 각도, 방향과 조리개 설정이 조정되면 아주 높은 정확도의 교통 모니터링 시스템의 핵심기술로 사용될 수 있을 것으로 기대된다.

영역정보를 이용한 교통 혼잡도 측정 시스템의 설계 및 구현 (Design and Implemtation of a Road Congestion Analysis System using Regional Information)

  • 최병걸;정성일;안철웅;김승호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제5권6호
    • /
    • pp.748-757
    • /
    • 1999
  • 본 논문에서는 차량 영역의 추출을 이용한 효율적인 교통 혼잡도 측정 시스템을 설계하고 구현한다. 차량 영역 정보의 추출은 첫째 영역 분할, 둘째 작은 영역의 제거와 영역의 직사각형화, 셋째 영역의 병합 및 삭제의 단계로 나눌 수 있다. 영역 분할 단계에서는 획득한 도로 영상을 영역 기반 영역 분할에 의해 영역으로 분할한다. 그 다음 영역 분할 후의 영역 정보 중 차량 영역을 추출하는데 영향을 미치지 않는 작은 영역들을 제거하고, 남은 영역들을 직사각형화한다. 마지막으로 차선 별로 남은 영역들을 병합, 삭제함으로써 각 차선마다 차량 영역 정보를 추출할 수 있다. 이러한 방법은 배경 영상과 같은 부가적인 정보를 사용하지 않고 도로 자체 영상만으로 교통 혼잡도를 측정할 수 있으며, 그림자의 영향이 없을 경우 적용할 수 있는 기법이다.Abstract In this paper, we designed and implemented an efficient road congestion analysis system using regional information. To extract vehicle regions from a road image, the system process the image in five steps: segmentation, small region elimination, region rectangularization, region merging and region deletion. First, we segment road image by a threshold value. Then, we eliminate useless small regions to extract vehicle region, and perform region rectangularization. Finally, we extract vehicle region of each lane of the road by region merging and deletion. This method has the advantage of measuring road congestion without additional information such as background images. But this method must be applied to road images without shadow.

교통 영상에서 은닉 마르코프 모델을 이용한 차량 분할 기법 (Vehicle Segmentation Scheme Based on the Hidden Markov Model in Traffic Sequence)

  • 이대호;박영태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.850-852
    • /
    • 2005
  • 본 논문에서는 교통 영상에서 실시간으로 차량을 검출하는 새로운 기법을 소개한다. 차량의 검출을 위하여 구배도의 방향 정보를 사용하며 차량 영역의 정확한 분할을 위하여 은닉 마르코프 모델을 사용한다. 구배도 방향정보를 이용하므로 그림자 영역의 영향을 줄일 수 있으며 은닉 마르코프 모델을 이용하므로 배경과 비슷한 차량과 근접한 차량의 분리가 가능하다. 따라서 저해상도의 교 통 영상에서 다양한 기상 조건, 그림자의 존재와 교통 상황에 강건한 검출 결과를 나타낸다.

  • PDF

격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할 (Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values)

  • 김구진;백낙훈
    • 한국멀티미디어학회논문지
    • /
    • 제8권10호
    • /
    • pp.1369-1382
    • /
    • 2005
  • 도로 영상에서 차량 영역을 분할하는 차량 영역 분할(vehicle segmentation) 문제는 지능형 교통 시스템을 비롯한 다양한 응용 분야들에서 중요하게 사용되는 기본 연산(fundamental operation)이다. 본 연구에서는 야외의 도로 상에 설치된 CCD카메라에서 촬영된 정지 영상으로부터 차량 영역을 찾아내는 효율적인 방법을 제안한다 제안하는 방법은 입력되는 영상들을 격자 단위로 분할하여 각 격자에서의 에지 검출 결과를 대표하는 특징값(feature value)들을 통계적으로 분석한 후, 이를 바탕으로 최적해를 구한다. 전처리 과정에서는 다양한 외부 환경에서 촬영한 배경 영상들에 대해서 각 격자에서의 특징값들을 통계 처리한다. 입력된 차량 영상에서는 각 격자의 특징값이 배경 영상의 대응되는 격자에서의 특징값과 통계적으로 얼마나 오차를 보이냐에 따라, 배경 영역인지 차량 영역인지를 판단한다. 격자 별로 차량 영역에 해당하는 지를 판정한 뒤, 이 결과에 동적 프로그래밍(dynamic Programming) 기법을 이용하여 차량을 포함하는 최적의 직사각형 영역을 찾아낸다. 본 논문에서 제안하는 방법은 통계 처리와 전역 탐색 기법을 사용하므로 휴리스틱에 주로 의존하는 기존 연구들에 비해 좀더 체계적이다. 또한, 배경 영상에 대한 통계 처리는 흐리거나 맑은 등의 날씨 변화 및 바람이나 진동에 의한 카메라의 흔들림과 같은 다양한 외부 요인들이 가져올 수 있는 노이즈나 오차에 대해서도 높은 신뢰성을 보여준다. 제안하는 방법을 구현한 프로토타입 시스템은 $1280\times960$ 크기의 차량 영상들을 장당 평균 0.150초의 수행 시간에 처리하였으며, 총 270장의 다양한 노이즈를 가지는 차량 영상들에 대해 $97.03\%$의 성공률을 보였다.

  • PDF

메모리 맵 기반 메모리 영역 분할과 메모리 갱신 정보를 활용한 결함 후보 축소 기법 (Fault Localization Method by Utilizing Memory Update Information and Memory Partitioning based on Memory Map)

  • 김관효;최기용;이정원
    • 정보과학회 논문지
    • /
    • 제43권9호
    • /
    • pp.998-1007
    • /
    • 2016
  • 요즘 자동차 제작비용 중 차량용 전자장치에 사용되는 비용이 30% 이상을 차지하고 있다. 따라서 차량용 전자장치에 사용되는 비용 절약의 필요성이 증가하고 있다. 그런데, 완성차 업체들은 차량용 전장부품을 제작하는 일을 대부분 외주 업체에 맡기기 때문에 전장부품의 테스트 및 디버깅의 복잡도가 증가하고 있다. 이로 인해, 차량용 전장부품의 테스트 시에 발생하는 결함의 위치를 찾아내는데 많은 비용과 시간을 소비하고 있다. 이러한 문제를 해결하기 위해, 본 논문에서는 차량용 전장부품을 대상으로 통합 테스팅을 수행하는 검사자가 메모리상의 결함후보를 축소할 수 있는 기법을 제안한다. 본 기법에서는 메모리 맵을 이용하여 메모리를 분할하고, 분할된 메모리 영역에 메모리 갱신 정보를 적용해 각 분할 영역의 결함 의심도를 계산한다. 이렇게 계산된 결함 의심도를 기준으로 분할 영역들의 결함 의심순위를 결정할 수 있다. 제안하는 기법을 이용해 결함 후보 영역을 전체 메모리 크기의 1/6 정도로 축소했다.

논리 연산을 이용한 주행차량 분할 및 추적에 관한 연구 (A Study on Moving Vehicles Segmentation and Tracking using Logic Operations)

  • 조경민;최기호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2004년도 춘계학술발표대회논문집
    • /
    • pp.211-214
    • /
    • 2004
  • 본 논문은 논리 연산을 이용한 실시간 주행 차량 분할 및 추적에 관한 알고리즘을 제안하였다. 연속된 프레임 간에 논리연산을 이용하여 영상을 분할하고, 배경과 잡음을 제거하였으며 영상에서 주행차량의 이동 영역을 추출하였다. 주행차량들을 논리 연산을 이용하여 영상분할 함으로써 기존 방법에 비해 평활화 및 에지추출 단계에서 나타날 수 있는 문제점들을 제거하였고, 전처리 단계를 줄였으며, 알고리즘을 단순화 하였다. 또한 추적되는 영상으로부터 위치와 컬러등의 주행 차량의 특징을 직접 추출 가능하도륵 하였다.

  • PDF

Automatic Marked Watershed를 이용한 차도 분할 (Road Segmentation using Automatic Marked Watershed)

  • 박한동;오정수
    • 한국정보통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.409-415
    • /
    • 2017
  • 본 논문은 watershed를 이용한 차도 분할 알고리즘을 제안하고 있다. 제안된 알고리즘은 차량과 차선 정보를 이용해 차도 마커와 배경 마커를 자동 생성하는 automatic marked watershed를 이용한 영역 분할 알고리즘이고 이는 지나치게 많은 영역이나 마커를 위한 수작업 같은 watershed 기반 영역 분할의 문제점들을 해결할 수 있다. 차도 마커는 차선은 포함되나 차량은 배제되는 순수한 차도 영역을 위한 속성을 포함하고 배경 마커는 차량과 배경을 포함하는 나머지 영역을 위한 속성을 포함하고 있다. 실제 도로 영상에 적용된 영역 분할 결과들은 제안된 알고리즘은 다양한 환경에서 적절한 마커들을 생성할 수 있고, 주행 차로와 양옆 차로를 포함한 필수 차도 영역을 적절하게 분할할 수 있는 것을 보여주고, 성능 면에 있어서는 제안된 알고리즘은 수작업으로 생성된 마커를 사용한 기존 알고리즘과 대등함을 보여준다.

영상분할 및 Haar-like 특징 기반 자동차 검출 (Vehicle Detection based on the Haar-like feature and Image Segmentation)

  • 최미순;이정환;석정희;노태문;심재창
    • 한국멀티미디어학회논문지
    • /
    • 제13권9호
    • /
    • pp.1314-1321
    • /
    • 2010
  • 본 논문에서는 도로에서 주행 중인 차량검출 알고리즘에 대하여 연구한다. 카메라에서 입력된 영상으로부터 차량을 검출하기위해 먼저 분할 및 합병(split & merge)방법을 적용하여 영상을 분할하고 그 다음 분할된 영역을 해석하여 차량이 위치할 가능성이 높은 영역을 집중적으로 탐색하여 차량을 실시간으로 검출하는 알고리즘을 연구한다. 전방차량의 후면을 검출하기 위하여 수직/수평 성분을 특정으로 하였으며 적분영상을 이용하여 계산시간을 줄일 수 있는 Haar-like방법을 적용하였으며 분류기로는 SVM을 사용하였다. 제안된 방법의 성능을 평가하기 위해 350개의 영상을 사용하여 분류기를 학습하였으며 또한 학습에 사용하지 않은 비학습영상 150개를 사용하여 인식률을 구하였다. 실험결과 비학습영상에 대해 95.00%의 인식률을 얻었다.