• Title/Summary/Keyword: 차량 안전

Search Result 2,291, Processing Time 0.027 seconds

Vehicle Ramming Terror Attacks and Physical Barriers as a Counterterrorism Policy (차량돌진테러와 물리적 방어물에 관한 연구)

  • Yun, Minwoo;Kim, Eunyoung
    • Korean Security Journal
    • /
    • no.55
    • /
    • pp.9-29
    • /
    • 2018
  • Recently, it has been frequently reported there were rapid increase of vehicle ramming attacks in the Western countries, such as Europe, United States of America, Australia, and Canada. Vehicle ramming attacks happened in Western countries specifically targeted civilians and maliciously intented to attack as many victims as possible. and resulted in significant number of casualties and wounds. Experts in terrorism analyze the increase of terrors using vehicle is largely due to the change of terror strategy of Islamic extremest groups like ISIS which encouraging would-be terrorist to use vehicles as an effective killing weapons. Accordingly, The most of countries experienced vehicle terrorist attacks began to build physical barriers including ballards, fences, and obstacles on the main shopping streets, transportation facilities, and famous crowded places and buildings in order to prevent mass killing by terrorists' vehicle ramming attack. Contrary to such swift respond to be prepared attacks using vehicle as a weapon Western countries, there are still lack of interests in preparing this type of terrorist attacks among domestic policy makers and scholars. To fulfill the research gap, this study aimed to investigate important issues regarding physical barriers in South Korea. The contributions, implications of this study and suggestions for policy implications of this study findings were discussed in results and discuss.

Dynamic Interaction Evaluation of Maglev Vehicle and the Segmented Switching System (자기부상열차 차량과 분기기 동적상호작용 시험 평가)

  • Lee, Jong-Min;Han, Jong-Boo;Kim, Sung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.576-582
    • /
    • 2017
  • The switching system in a maglev train is an indispensable element for distributing train routes, and it should be designed to ensure safe operation. Unlike conventional wheels on rails, the switching track in EMS-type maglev is supported by a group of 3 to 4 steel girders. When the vehicle changes its route, the segmented track allows the girders to change from a straight position to a curved one with a small radius of curvature. Hence, the structural characteristics of the segmented switching system may affect the levitation stability of the maglev vehicle. This study experimentally evaluates the dynamic interaction between maglev vehicles and a segmented switching system. The results may be helpful for improving the switching system. The measured levitation and lateral air gaps were evaluated at a vehicle speed of 25 km/h, and the ride quality of the Maglev vehicle was determined to be "comfortable" according to the UIC 513 standard.

Analysis on the Effect of Vehicle Speed Change on the Vehicle Information Guide System for Pedestrian Safety (보행자 안전을 위한 차량정보안내시스템 도입에 따른 통행속도 변화에 미치는 영향 분석)

  • Kwang-Bok Jung;Yeong-YUL Kim;Jae-Yoon Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.93-102
    • /
    • 2023
  • This study conducted an effect evaluation before and after the installation of a vehicle information guidance system that provides drivers with information about vehicle speed and the presence or absence of pedestrians near pedestrian crossings. There are three types of scenarios: when no information is provided to the driver (S1), when only the vehicle driving speed is provided (S2), and when pedestrians are present on the pedestrian crossing and when both vehicle driving speeds are provided (S3). did. As a result of the survey, the speed reduction rate of the vehicle was found to be about 0.4~0.7km greater in S2 and S3 that provide information to the driver than in scenario S1. In addition, in the scenario S3, the speed reduction rate is 0.2km higher than that in the case where there are pedestrians near the pedestrian crossing, which further reduces the vehicle speed. Statistical analysis also showed that there was a difference in the speed reduction rate of the average vehicle for the three scenarios, and that the speed reduction rate was large in the presence of pedestrians.

Study on the Drivers' Response Characteristics Using Spectral Analysis of Car Following Data (차량 추종자료의 파동해석을 통한 운전자 반응 특성 연구)

  • CHAE, Chandle;OH, Sei-Chang;KIM, Youngho;LEE, Jun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.405-416
    • /
    • 2015
  • This paper developed a method analyze drivers' response characteristics using spectral analysis with car following data. Cross-correlation function and cross spectrum are produced by Fourier transform from speed fluctuations of leading vehicle and following vehicle during the designated time ${\tau}$. Based on the analysis data, a process to calculate the reaction time and stimulus-adaption index of following vehicle was developed and 170 cases of field data was applied. It was reported average of 0.654 and 2.091 seconds of stimulus-adaption index and reaction time respectively. In conclusion, the developed indexes might contribute to enhance vehicle control of autonomous vehicle more efficient and safer.

A study on speed-sensitive vehicle brake light system using LED (LED를 이용한 속도 감응형 차량용 브레이크등 시스템)

  • Kim, Tae-Jin;Kim, Hyung-Jun;Park, Seong-Jun;Park, In-Soo;Park, Sung-Won;Kim, Sung-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.809-810
    • /
    • 2016
  • In this study, Speed-sensitive vehicle brake using the LED, When the driver presses the brake pedal, range step while being turned in connection taillights brake of the vehicle, such as speed-sensitive vehicle brake using the LED, It is turned on according to the deceleration of the vehicle to be series of points are displayed. The rear vehicle can prevent collision about an abrupt stop of preceding vehicle by perceiving deceleration state of preceding vehicle easier and faster. Also, if the inter-vehicle distance by using an ultrasonic sensor is closer than a certain distance, the emergency light turns on to convey the situation to the driver of the rear vehicle with a buzzer.

  • PDF

A Design of Traceable and Privacy-Preserving Authentication in Vehicular Networks (VANET 환경에서 프라이버시를 보호하면서 사고 발생 시 추적 가능한 인증 프로토콜)

  • Kim, Sung-Hoon;Kim, Bum-Han;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.115-124
    • /
    • 2008
  • In vehicular networks, vehicles should be able to authenticate each other to securely communicate with network-based infrastructure, and their locations and identifiers should not be exposed from the communication messages. however, when an accident occurs, the investigating authorities have to trace down its origin. As vehicles communicate not only with RSUs(Road Side Units) but also with other vehicles, it is important to minimize the number of communication flows among the vehicles while the communication satisfies the several security properties such as anonymity, authenticity, and traceability. In our paper, when the mutual authentication protocol is working between vehicles and RSUs, the protocol offers the traceability with privacy protection using pseudonym and MAC (Message Authentication Code) chain. And also by using MAC-chain as one-time pseudonyms, our protocol does not need a separate way to manage pseudonyms.

Study on Running Safety of EMS-Type Maglev Vehicle Traveling over a Switching System (상전도흡인식 도시형 자기부상열차의 분기기 주행안전성 연구)

  • Han, Jong-Boo;Lee, Jong Min;Han, Hyung-Suk;Kim, Sung-Soo;Yang, Seok-Jo;Kim, Ki-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1309-1315
    • /
    • 2014
  • The switch for a maglev vehicle should be designed such that the vehicle safely changes its track without touching the guiderail. In particular, a medium-to-low-speed EMS -type maglev train relies heavily on a U-type electromagnet where it generates levitation force and guidance force simultaneously. Therefore, it is necessary to evaluate the safety of the vehicle whenever it passes the switch, as it lacks active control of the guidance force. Furthermore, when the vehicle passes a segmented switch, which is a group of curves made up of connected lines with a small radius of curvature, it may come into mechanical contact with the guiderail owing to the excessive lateral displacement of the electromagnet. The goal of this study is to analyze the influence of a segmented switch on the safety of major design-related variables for achieving improved running safety. We propose a three-dimensional multibody dynamics model composed of two cars with one body. Using the proposed model, we perform a simulation of the lateral air gap, which is one of the measurements of the running safety of the vehicle when it passes the switch. The analyzed design variables are the length between short span girder, the articulation angle, the length between two centers of a fixed girder at its ends, and the number of girders. On the basis of the effects of the considered design variables, we establish an optimized design of a switch with improved safety.

A study on Analysis of Impact Deceleration Characteristics of Railway Freight Car (1차원 해석방법을 이용한 화차의 충돌가속도 분석)

  • Son, Seung Wan;Jung, Hyun Seung;Hwang, Jun Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.32-38
    • /
    • 2020
  • This study examined the problems of existing vehicles to propose alternatives to improve the crashworthiness of railway freight cars through collision acceleration analysis using a one-dimensional collision analysis method. A collision scenario of railway shunting and crash accidents was selected from the collision accident cases and international standards. A one-dimensional collision simulation using LS-DYNA was performed according to those scenarios. As a result, the acceleration level of the freight wagon was calculated to be under 2g and was predicted to meet the EN 12663 standard in the shunting situation. On the other hand, the result of crash simulation with an impact velocity between 10 and 15 km/h revealed the shock absorber capacity of the railway coupler to be insufficient in a crash situation, resulting in increased acceleration, and carbody deformation could be predicted. As a method of improving the crashworthiness, a deformation tube-type energy absorber was applied to the coupler system, and collision analysis was performed again with new energy absorption strategy. Overall, the simulation showed that the acceleration level was decreased by 12% of the conventional freight-car energy absorption system.

A Study on Appropriate Breadth for U-turn Setup (U-turn 설치를 위한 적정 폭원에 관한 연구)

  • Lee, Jin-Uk;Kim, Gi-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.39-47
    • /
    • 2009
  • Currently, the minimum breadth as a point available for U-turn setup is designated as "over 9m for one way" in the traffic safety facilities practical manuals, and vehicles allowed to make a U-turn are limited to passenger cars. However, as passenger cars have recently become larger and SUVs (Sports Utility Vehicles) are being popularized, they fail to make a U-turn in one attempt. This causes a traffic jam and a problem with traffic safety. This study proposed, compared, and tested the measured values of actual differences in the turning radius of U-turn by actual cars with estimated values by using PC-Crash, a car accident simulation program. Then, the study forecasted the turning radius of U-turns of Korean passenger cars by using PC-Crash, and proposed appropriate breadth for U-turn setup.

Effects of Expansion of Sleeper Span at the Deck End of a Long Continuous Bridge on Train Safety and Track Stability (장대교량 신축부에서 침목간격 확대가 차량의 주행안전성 및 궤도의 구조안정성에 미치는 영향)

  • Yang, Sin-Chu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.620-627
    • /
    • 2015
  • Long continuous bridge deck can become contracted considerably as temperature drops, which can lead to a large expansion of sleeper span at the end of it. Since this huge sleeper span then can cause problems both with safety of train operation and structural stability of tracks, it is necessary to take the issue into consideration systematically in the designing process of the bridge. In this paper, an evaluation process through the analysis of train-track interaction was presented which can basically review the effects of the expansion of sleeper span at the end of long continuous bridge deck on the safety of the train and the structural stability of the track. The analyses of the interaction between the light rail train and tracks were carried out targeting the sleeper span as a main parameter. The safety of train operation and structural stability of tracks in a light rail system due to the expansion of the sleeper span were evaluated by comparing the numerical results with the related criteria.